287 lines
12 KiB
Python
287 lines
12 KiB
Python
import torch
|
|
import torch.nn as nn
|
|
from torch.optim import AdamW
|
|
from torch.utils.data import DataLoader
|
|
import numpy as np
|
|
import math
|
|
import tqdm
|
|
import matplotlib.pyplot as plt
|
|
import json
|
|
import argparse
|
|
|
|
from models import TimeAwareGPT2, CombinedLoss
|
|
from utils import PatientEventDataset
|
|
|
|
# --- Configuration ---
|
|
class TrainConfig:
|
|
# Data parameters
|
|
train_data_path = 'ukb_real_train.bin'
|
|
val_data_path = 'ukb_real_val.bin'
|
|
block_length = 48 # Sequence length
|
|
|
|
# Model parameters
|
|
n_embd = 120
|
|
n_layer = 12
|
|
n_head = 12
|
|
pdrop = 0.1
|
|
token_pdrop = 0.1
|
|
|
|
# Training parameters
|
|
max_epoch = 200
|
|
batch_size = 128
|
|
lr_initial = 6e-4
|
|
lr_final = 6e-5
|
|
weight_decay = 2e-1
|
|
warmup_epochs = 10
|
|
early_stopping_patience = 10
|
|
betas = (0.9, 0.99)
|
|
|
|
# Loss parameters
|
|
# 0 = padding, 1 = "no event"
|
|
ignored_token_ids = [0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] # Example ignored token IDs
|
|
|
|
# System parameters
|
|
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
|
|
# --- Main Training Script ---
|
|
def main():
|
|
parser = argparse.ArgumentParser(description='Train a Time-Aware GPT-2 model.')
|
|
parser.add_argument('--n_layer', type=int, default=12, help='Number of transformer layers.')
|
|
parser.add_argument('--n_embd', type=int, default=120, help='Embedding dimension.')
|
|
parser.add_argument('--n_head', type=int, default=12, help='Number of attention heads.')
|
|
parser.add_argument('--max_epoch', type=int, default=200, help='Maximum number of training epochs.')
|
|
parser.add_argument('--batch_size', type=int, default=128, help='Batch size for training.')
|
|
parser.add_argument('--lr_initial', type=float, default=6e-4, help='Initial learning rate.')
|
|
parser.add_argument('--lr_final', type=float, default=6e-5, help='Final learning rate.')
|
|
parser.add_argument('--weight_decay', type=float, default=2e-1, help='Weight decay for the optimizer.')
|
|
parser.add_argument('--warmup_epochs', type=int, default=10, help='Number of warmup epochs.')
|
|
parser.add_argument('--early_stopping_patience', type=int, default=10, help='Patience for early stopping.')
|
|
parser.add_argument('--pdrop', type=float, default=0.1, help='Dropout probability.')
|
|
parser.add_argument('--token_pdrop', type=float, default=0.1, help='Token dropout probability.')
|
|
parser.add_argument('--betas', type=float, nargs=2, default=[0.9, 0.99], help='AdamW betas.')
|
|
|
|
args = parser.parse_args()
|
|
|
|
config = TrainConfig()
|
|
config.n_layer = args.n_layer
|
|
config.n_embd = args.n_embd
|
|
config.n_head = args.n_head
|
|
config.max_epoch = args.max_epoch
|
|
config.batch_size = args.batch_size
|
|
config.lr_initial = args.lr_initial
|
|
config.lr_final = args.lr_final
|
|
config.weight_decay = args.weight_decay
|
|
config.warmup_epochs = args.warmup_epochs
|
|
config.early_stopping_patience = args.early_stopping_patience
|
|
config.pdrop = args.pdrop
|
|
config.token_pdrop = args.token_pdrop
|
|
config.betas = tuple(args.betas)
|
|
|
|
|
|
model_filename = f"best_model_n_embd_{config.n_embd}_n_layer_{config.n_layer}_n_head_{config.n_head}.pt"
|
|
checkpoint_filename = f"best_model_checkpoint_n_embd_{config.n_embd}_n_layer_{config.n_layer}_n_head_{config.n_head}.pt"
|
|
|
|
# --- 0. Save Configuration ---
|
|
config_filename = f"config_n_embd_{config.n_embd}_n_layer_{config.n_layer}_n_head_{config.n_head}.json"
|
|
config_dict = {k: v for k, v in vars(config).items() if not k.startswith('__')}
|
|
with open(config_filename, 'w') as f:
|
|
json.dump(config_dict, f, indent=4)
|
|
print(f"Configuration saved to {config_filename}")
|
|
|
|
# --- 1. Data Loading ---
|
|
print(f"Loading data from {config.train_data_path} and {config.val_data_path}...")
|
|
train_data_arr = np.memmap(config.train_data_path, dtype=np.uint32, mode='r').reshape(-1, 3)
|
|
val_data_arr = np.memmap(config.val_data_path, dtype=np.uint32, mode='r').reshape(-1, 3)
|
|
|
|
# Infer vocab_size from the data (max label + 1)
|
|
vocab_size = int(max(train_data_arr[:, 2].max(), val_data_arr[:, 2].max())) + 1
|
|
print(f"Inferred vocabulary size: {vocab_size}")
|
|
|
|
train_dataset = PatientEventDataset(train_data_arr, config.block_length)
|
|
val_dataset = PatientEventDataset(val_data_arr, config.block_length)
|
|
|
|
train_loader = DataLoader(train_dataset, batch_size=config.batch_size, shuffle=True, num_workers=4, pin_memory=True)
|
|
val_loader = DataLoader(val_dataset, batch_size=config.batch_size, shuffle=False, num_workers=4, pin_memory=True)
|
|
|
|
# --- 2. Model, Optimizer, and Loss Initialization ---
|
|
print(f"Initializing model on {config.device}...")
|
|
model = TimeAwareGPT2(
|
|
vocab_size=vocab_size,
|
|
n_embd=config.n_embd,
|
|
n_layer=config.n_layer,
|
|
n_head=config.n_head,
|
|
pdrop=config.pdrop,
|
|
token_pdrop=config.token_pdrop
|
|
).to(config.device)
|
|
|
|
print(f"Model initialized with {model.get_num_params():.2f}M trainable parameters.")
|
|
|
|
loss_fn = CombinedLoss(config.ignored_token_ids)
|
|
optimizer = AdamW(model.parameters(), lr=config.lr_initial, weight_decay=config.weight_decay, betas=config.betas)
|
|
|
|
# --- 3. Training Loop ---
|
|
best_val_loss = float('inf')
|
|
patience_counter = 0
|
|
|
|
# Lists to store losses
|
|
train_losses_ce, train_losses_surv, train_losses_total = [], [], []
|
|
val_losses_ce, val_losses_surv, val_losses_total = [], [], []
|
|
|
|
print("Starting training...")
|
|
for epoch in range(config.max_epoch):
|
|
# --- Learning Rate Scheduling ---
|
|
if epoch < config.warmup_epochs:
|
|
lr = config.lr_initial
|
|
else:
|
|
progress = (epoch - config.warmup_epochs) / (config.max_epoch - config.warmup_epochs)
|
|
lr = config.lr_final + 0.5 * (config.lr_initial - config.lr_final) * (1 + math.cos(math.pi * progress))
|
|
|
|
for param_group in optimizer.param_groups:
|
|
param_group['lr'] = lr
|
|
|
|
# --- Training Phase ---
|
|
model.train()
|
|
train_loss_ce_acc, train_loss_surv_acc = 0.0, 0.0
|
|
train_steps = 0
|
|
|
|
pbar = tqdm.tqdm(train_loader, desc=f"Epoch {epoch+1}/{config.max_epoch} [Train]")
|
|
for event_seq, time_seq in pbar:
|
|
event_seq, time_seq = event_seq.to(config.device), time_seq.to(config.device)
|
|
|
|
# Prepare inputs and targets
|
|
input_events = event_seq[:, :-1]
|
|
input_times = time_seq[:, :-1]
|
|
target_events = event_seq[:, 1:]
|
|
target_wait_times = (time_seq[:, 1:] - time_seq[:, :-1]).float()
|
|
|
|
# Forward pass
|
|
logits = model(input_events, input_times)
|
|
loss_ce, loss_survival = loss_fn(logits, target_events, target_wait_times)
|
|
loss = loss_ce + loss_survival
|
|
|
|
# Backward pass and optimization
|
|
optimizer.zero_grad()
|
|
loss.backward()
|
|
optimizer.step()
|
|
|
|
train_loss_ce_acc += loss_ce.item()
|
|
train_loss_surv_acc += loss_survival.item()
|
|
train_steps += 1
|
|
pbar.set_postfix({'loss_ce': f'{loss_ce.item():.4f}', 'loss_surv': f'{loss_survival.item():.4f}', 'lr': f'{lr:.2e}'})
|
|
|
|
avg_train_loss_ce = train_loss_ce_acc / train_steps
|
|
avg_train_loss_surv = train_loss_surv_acc / train_steps
|
|
train_losses_ce.append(avg_train_loss_ce)
|
|
train_losses_surv.append(avg_train_loss_surv)
|
|
train_losses_total.append(avg_train_loss_ce + avg_train_loss_surv)
|
|
|
|
# --- Validation Phase ---
|
|
model.eval()
|
|
val_loss_ce_acc, val_loss_surv_acc = 0.0, 0.0
|
|
val_steps = 0
|
|
|
|
with torch.no_grad():
|
|
pbar_val = tqdm.tqdm(val_loader, desc=f"Epoch {epoch+1}/{config.max_epoch} [Val]")
|
|
for event_seq, time_seq in pbar_val:
|
|
event_seq, time_seq = event_seq.to(config.device), time_seq.to(config.device)
|
|
|
|
input_events = event_seq[:, :-1]
|
|
input_times = time_seq[:, :-1]
|
|
target_events = event_seq[:, 1:]
|
|
target_wait_times = (time_seq[:, 1:] - time_seq[:, :-1]).float()
|
|
|
|
logits = model(input_events, input_times)
|
|
loss_ce, loss_survival = loss_fn(logits, target_events, target_wait_times)
|
|
|
|
val_loss_ce_acc += loss_ce.item()
|
|
val_loss_surv_acc += loss_survival.item()
|
|
val_steps += 1
|
|
pbar_val.set_postfix({'loss_ce': f'{loss_ce.item():.4f}', 'loss_surv': f'{loss_survival.item():.4f}'})
|
|
|
|
avg_val_loss_ce = val_loss_ce_acc / val_steps
|
|
avg_val_loss_surv = val_loss_surv_acc / val_steps
|
|
total_val_loss = avg_val_loss_ce + avg_val_loss_surv
|
|
val_losses_ce.append(avg_val_loss_ce)
|
|
val_losses_surv.append(avg_val_loss_surv)
|
|
val_losses_total.append(total_val_loss)
|
|
|
|
print(f"Epoch {epoch+1} Summary: \n"
|
|
f" Train Loss: {avg_train_loss_ce + avg_train_loss_surv:.4f} (CE: {avg_train_loss_ce:.4f}, Surv: {avg_train_loss_surv:.4f})\n"
|
|
f" Val Loss: {total_val_loss:.4f} (CE: {avg_val_loss_ce:.4f}, Surv: {avg_val_loss_surv:.4f})\n"
|
|
f" Learning Rate: {lr:.6f}")
|
|
|
|
# --- Early Stopping Check ---
|
|
if total_val_loss < best_val_loss:
|
|
best_val_loss = total_val_loss
|
|
patience_counter = 0
|
|
print(f"Validation loss improved to {best_val_loss:.4f}. Saving checkpoint...")
|
|
torch.save(model.state_dict(), checkpoint_filename)
|
|
else:
|
|
if epoch >= config.warmup_epochs:
|
|
patience_counter += 1
|
|
print(f"Validation loss did not improve. Patience: {patience_counter}/{config.early_stopping_patience}")
|
|
|
|
if patience_counter >= config.early_stopping_patience:
|
|
print("\nEarly stopping triggered due to no improvement in validation loss.")
|
|
break
|
|
|
|
# --- Save Best Model at the End ---
|
|
if best_val_loss != float('inf'):
|
|
print(f"\nTraining finished. Loading best model from checkpoint with validation loss {best_val_loss:.4f}.")
|
|
model.load_state_dict(torch.load(checkpoint_filename))
|
|
print(f"Saving final best model to {model_filename}")
|
|
torch.save(model.state_dict(), model_filename)
|
|
else:
|
|
print("\nTraining finished. No best model to save as validation loss never improved.")
|
|
|
|
# --- Save losses to a txt file ---
|
|
losses_filename = f"losses_n_embd_{config.n_embd}_n_layer_{config.n_layer}_n_head_{config.n_head}.txt"
|
|
with open(losses_filename, 'w') as f:
|
|
f.write("epoch,train_loss_ce,train_loss_surv,train_loss_total,val_loss_ce,val_loss_surv,val_loss_total\n")
|
|
for i in range(len(train_losses_total)):
|
|
f.write(f"{i+1},{train_losses_ce[i]},{train_losses_surv[i]},{train_losses_total[i]},{val_losses_ce[i]},{val_losses_surv[i]},{val_losses_total[i]}\n")
|
|
print(f"\nLosses saved to {losses_filename}")
|
|
|
|
# --- Plot and Save Loss Curves ---
|
|
num_epochs = len(train_losses_total)
|
|
epochs = range(1, num_epochs + 1)
|
|
|
|
plt.figure(figsize=(18, 5))
|
|
|
|
# Plot CE Loss
|
|
plt.subplot(1, 3, 1)
|
|
plt.plot(epochs, train_losses_ce, label='Train CE')
|
|
plt.plot(epochs, val_losses_ce, label='Val CE')
|
|
plt.title('Cross-Entropy Loss')
|
|
plt.xlabel('Epochs')
|
|
plt.ylabel('Loss')
|
|
plt.legend()
|
|
plt.grid(True)
|
|
|
|
# Plot Survival Loss
|
|
plt.subplot(1, 3, 2)
|
|
plt.plot(epochs, train_losses_surv, label='Train Survival')
|
|
plt.plot(epochs, val_losses_surv, label='Val Survival')
|
|
plt.title('Survival Loss')
|
|
plt.xlabel('Epochs')
|
|
plt.ylabel('Loss')
|
|
plt.legend()
|
|
plt.grid(True)
|
|
|
|
# Plot Total Loss
|
|
plt.subplot(1, 3, 3)
|
|
plt.plot(epochs, train_losses_total, label='Train Total')
|
|
plt.plot(epochs, val_losses_total, label='Val Total')
|
|
plt.title('Total Loss')
|
|
plt.xlabel('Epochs')
|
|
plt.ylabel('Loss')
|
|
plt.legend()
|
|
plt.grid(True)
|
|
|
|
plt.tight_layout()
|
|
plt.savefig('loss_curves.png')
|
|
print("\nLoss curves saved to loss_curves.png")
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main() |