1119 lines
38 KiB
Python
1119 lines
38 KiB
Python
#!/usr/bin/env python
|
|
# coding: utf-8
|
|
|
|
# # Delphi inference and evaluation
|
|
#
|
|
# Welcome to the Delphi evaluation notebook! To run this notebook, you need to have the Delphi model checkpoint.
|
|
# Refer to the README for instructions on how to train it on synthetic (or real!) data.
|
|
#
|
|
# Here, we show how to work with the model, load data and perform inference. We also reproduce some of the figures from the paper.
|
|
#
|
|
# Note that this notebook in its current state was executed using the original Delphi checkpoint and full UK biobank data. The small synthetic dataset we provide in this repository may not be sufficient to reproduce all the results.
|
|
#
|
|
# On Mac M1 Pro CPU using the synthetic dataset, the notebook takes ~10 minutes to run.
|
|
#
|
|
# ## Table of contents
|
|
#
|
|
# 1. Loading model
|
|
# 2. Data: structure and loading
|
|
# 3. Inference
|
|
# 4. Prediction of future disease rates
|
|
# 5. Checking calibration of predicted rates
|
|
# 6. Evaluation of AUC
|
|
# 7. Looking into attention patterns
|
|
# 8. Token embedding UMAP
|
|
#
|
|
#
|
|
|
|
# In[2]:
|
|
|
|
|
|
import os
|
|
import torch
|
|
from model import DelphiConfig, Delphi
|
|
from tqdm import tqdm
|
|
import pandas as pd
|
|
import numpy as np
|
|
import textwrap
|
|
import matplotlib.pyplot as plt
|
|
get_ipython().run_line_magic('config', "InlineBackend.figure_format='retina'")
|
|
|
|
plt.rcParams['figure.facecolor'] = 'white'
|
|
plt.rcParams.update({'axes.grid': True,
|
|
'grid.linestyle': ':',
|
|
'axes.spines.bottom': False,
|
|
'axes.spines.left': False,
|
|
'axes.spines.right': False,
|
|
'axes.spines.top': False})
|
|
plt.rcParams['figure.dpi'] = 72
|
|
plt.rcParams['pdf.fonttype'] = 42
|
|
|
|
#Green
|
|
light_male = '#BAEBE3'
|
|
normal_male = '#0FB8A1'
|
|
dark_male = '#00574A'
|
|
|
|
|
|
#Purple
|
|
light_female = '#DEC7FF'
|
|
normal_female = '#8520F1'
|
|
dark_female = '#7A00BF'
|
|
|
|
|
|
delphi_labels = pd.read_csv('delphi_labels_chapters_colours_icd.csv')
|
|
|
|
|
|
# In[3]:
|
|
|
|
|
|
# Delphi is capable of predicting the disease risk for 1,256 diseases from ICD-10 plus death.
|
|
# For illustrative purposes, some of the plots will focus on a subset of 10 selected diseases - the same subset in used in the Delphi paper.
|
|
|
|
diseases_of_interest = [46, 95, 1168, 1188, 374, 214, 305, 505, 603, 1269]
|
|
delphi_labels.iloc[diseases_of_interest][['name', 'ICD-10 Chapter (short)']]
|
|
|
|
|
|
# ## Load model
|
|
|
|
# In[4]:
|
|
|
|
|
|
out_dir = 'Delphi-2M'
|
|
device = 'cpu' # examples: 'cpu', 'cuda', 'cuda:0', 'mps', etc.
|
|
dtype ='float32' #'bfloat16' # 'float32' or 'bfloat16' or 'float16'
|
|
dtype = {'float32': torch.float32, 'float64': torch.float64, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
|
|
seed = 1337
|
|
|
|
torch.manual_seed(seed)
|
|
torch.cuda.manual_seed(seed)
|
|
|
|
|
|
# In[5]:
|
|
|
|
|
|
ckpt_path = os.path.join(out_dir, 'ckpt.pt')
|
|
checkpoint = torch.load(ckpt_path, map_location=device)
|
|
conf = DelphiConfig(**checkpoint['model_args'])
|
|
model = Delphi(conf)
|
|
state_dict = checkpoint['model']
|
|
model.load_state_dict(state_dict)
|
|
|
|
model.eval()
|
|
model = model.to(device)
|
|
|
|
checkpoint['model_args']
|
|
|
|
|
|
# In[6]:
|
|
|
|
|
|
# Let's try to use the loaded model to extrapolate a partial health trajectory.
|
|
|
|
example_health_trajectory = [
|
|
('Male', 0),
|
|
('B01 Varicella [chickenpox]',2),
|
|
('L20 Atopic dermatitis',3),
|
|
('No event', 5),
|
|
('No event', 10),
|
|
('No event', 15),
|
|
('No event', 20),
|
|
('G43 Migraine', 20),
|
|
('E73 Lactose intolerance',21),
|
|
('B27 Infectious mononucleosis',22),
|
|
('No event', 25),
|
|
('J11 Influenza, virus not identified',28),
|
|
('No event', 30),
|
|
('No event', 35),
|
|
('No event', 40),
|
|
('Smoking low', 41),
|
|
('BMI mid', 41),
|
|
('Alcohol low', 41),
|
|
('No event', 42),
|
|
]
|
|
example_health_trajectory = [(a, b * 365.25) for a,b in example_health_trajectory]
|
|
|
|
|
|
# In[ ]:
|
|
|
|
|
|
max_new_tokens = 100
|
|
|
|
name_to_token_id = {row[1]['name']: row[1]['index'] for row in delphi_labels.iterrows()}
|
|
|
|
events = [name_to_token_id[event[0]] for event in example_health_trajectory]
|
|
events = torch.tensor(events, device=device).unsqueeze(0)
|
|
ages = [event[1] for event in example_health_trajectory]
|
|
ages = torch.tensor(ages, device=device).unsqueeze(0)
|
|
|
|
res = []
|
|
with torch.no_grad():
|
|
y,b,_ = model.generate(events, ages, max_new_tokens, termination_tokens=[1269])
|
|
# Convert model outputs to readable format
|
|
events_data = zip(y.cpu().numpy().flatten(), b.cpu().numpy().flatten()/365.)
|
|
|
|
print('Input trajectory:')
|
|
for i, (event_id, age_years) in enumerate(events_data):
|
|
if i == len(example_health_trajectory):
|
|
print('=====================')
|
|
print('Generated trajectory:')
|
|
event_name = delphi_labels.loc[event_id, 'name']
|
|
print(f"{age_years:2.1f}: {event_name}")
|
|
|
|
|
|
# ## Load data
|
|
#
|
|
# The data include:
|
|
#
|
|
# Tokens include:
|
|
# - 1,257 different ICD-10 level 3 disease codes (e.g., E11 for Type 2 diabetes)
|
|
# - 9 lifestyle tokens (alcohol, smoking, BMI - each with 3 levels)
|
|
# - 2 sex tokens (male/female)
|
|
#
|
|
# The following technical tokens are added in the `get_batch` function:
|
|
# - 1 "no event" padding token
|
|
# - 1 non-informative padding token
|
|
#
|
|
# No-event tokens eliminate long time intervals without tokens, which are typical for younger ages, when people generally have fewer diseases and therefore less medical records. Transformers predict the text token probability distribution only at the time of currently observed tokens, hence, no-event tokens can also be inserted during inference to obtain the predicted disease risk at any given time of interest.
|
|
|
|
# In[8]:
|
|
|
|
|
|
from utils import get_batch, get_p2i
|
|
|
|
train = np.fromfile('data/ukb_simulated_data/train.bin', dtype=np.uint32).reshape(-1,3)
|
|
val = np.fromfile('data/ukb_simulated_data/val.bin', dtype=np.uint32).reshape(-1,3)
|
|
|
|
train = np.fromfile('../data/ukb_real_data/train.bin', dtype=np.uint32).reshape(-1,3)
|
|
val = np.fromfile('../data/ukb_real_data/val.bin', dtype=np.uint32).reshape(-1,3)
|
|
|
|
train_p2i = get_p2i(train) # mapping trajectory id to its position in the dataset
|
|
val_p2i = get_p2i(val)
|
|
|
|
dataset_subset_size = 2000 # len(val_p2i) # can be set to smaller number (e.g. 2048) for a quick run
|
|
|
|
|
|
# ## Calibration of predicted times
|
|
|
|
# In[9]:
|
|
|
|
|
|
# Fetch a bit of data and calculate future disease rates from it
|
|
d = get_batch(range(256), val, val_p2i, select='left', padding='random', block_size=128, device=device)
|
|
with torch.no_grad():
|
|
p = model(*d)[0].cpu().detach().numpy().squeeze()
|
|
t = (d[3]-d[1])[:,:].cpu().numpy().squeeze()
|
|
|
|
|
|
# In[10]:
|
|
|
|
|
|
from scipy.special import logsumexp
|
|
|
|
# Calculate expected waiting times from model predictions using competing exponentials theory
|
|
# In Delphi's framework, each possible event has an exponential distribution with rate λᵢ = exp(logits[i])
|
|
# The expected time until any event occurs is 1/sum(λᵢ) = 1/exp(logsumexp(logits))
|
|
# logsumexp provides numerical stability vs. calculating exp(logits) directly
|
|
|
|
# Let's see how the predicted waiting times compare to the observed waiting times
|
|
|
|
plt.figure(figsize=(4, 4))
|
|
# Calculate expected time to next token (inverse of hazard rate)
|
|
expected_t = 1/np.exp(logsumexp(p, axis=-1))
|
|
|
|
# Define bin width for logarithmic binning
|
|
delta_log_t = 0.1
|
|
log_range = np.arange(1.75, 4, delta_log_t)
|
|
|
|
# Calculate average observed time for each logarithmic bin
|
|
observed_t = []
|
|
for i in log_range:
|
|
# Create mask for current bin and valid times
|
|
bin_mask = (expected_t > 10**i) & (expected_t <= 10**(i+delta_log_t)) & (t > 0)
|
|
# Calculate mean for this bin
|
|
bin_mean = t[bin_mask].mean() if bin_mask.sum() > 0 else np.nan
|
|
observed_t.append(bin_mean)
|
|
plt.axes().set_aspect('equal')
|
|
plt.scatter(expected_t, t+0.5, marker=".", c='lightgrey', rasterized=True)
|
|
plt.xlabel('Expected days to next token')
|
|
plt.ylabel('Observed days to next token')
|
|
plt.plot(10**(np.arange(1.75,4,delta_log_t)+delta_log_t/2.),observed_t, label='average')
|
|
plt.yscale('log')
|
|
plt.xscale('log')
|
|
plt.legend()
|
|
plt.xlim(1,2e3)
|
|
plt.ylim(1,2e3)
|
|
plt.plot([0,1],[0,1], transform = plt.gca().transAxes, c='k' , ls=(0, (5, 5)), linewidth=0.7)
|
|
|
|
plt.gca().tick_params(length=1.15, width=0.3, labelsize=8, grid_alpha=1, grid_linewidth=0.45, grid_linestyle=':')
|
|
plt.gca().tick_params(length=1.15, width=0.3, labelsize=8, grid_alpha=0.0, grid_linewidth=0.35, which='minor')
|
|
|
|
|
|
# ## Incidence
|
|
|
|
# In[11]:
|
|
|
|
|
|
## Load large chunk of data
|
|
# `get_batch` function reads health trajectories from the dataset for requested indices of individuals
|
|
# it also packes the trajectories into batches of size `block_size`, padding with padding token if needed
|
|
# finally, it randomly add no event tokens and returns a tuple of tensors:
|
|
# - `d[0]`: diseases
|
|
# - `d[1]`: corresponding age
|
|
# - `d[2]`: disease labels (same as `d[0]`, but shifted by 1)
|
|
# - `d[3]`: label age (same as `d[1]`, but shifted by 1)
|
|
subset_size = 10_000
|
|
d = get_batch(range(subset_size), val, val_p2i,
|
|
select='left', block_size=128,
|
|
device=device, padding='random')
|
|
|
|
|
|
# In[12]:
|
|
|
|
|
|
# 2 is female token, 3 is male token
|
|
|
|
is_male = (d[0] == 3).any(axis=1).cpu().numpy()
|
|
is_female = (d[0] == 2).any(axis=1).cpu().numpy()
|
|
has_gender = is_male | is_female
|
|
|
|
|
|
# In[13]:
|
|
|
|
|
|
# lets split the large data chanks to smaller batches and calculate the logits for the whole dataset
|
|
p = []
|
|
model.to(device)
|
|
batch_size = 256
|
|
subset_size = min(dataset_subset_size, 10_000)
|
|
with torch.no_grad():
|
|
for d_batch in tqdm(zip(*map(lambda x: torch.split(x, batch_size), d)), total=d[0].shape[0]//batch_size+1):
|
|
p.append(model(*d_batch)[0].cpu().detach())
|
|
p = torch.vstack(p)
|
|
|
|
d = [d_.cpu() for d_ in d]
|
|
|
|
|
|
# ### Age-sex incidence baseline
|
|
|
|
# In[14]:
|
|
|
|
|
|
# calculate disease incidence rates for each disease, given age and sex
|
|
|
|
females = train[np.isin(train[:,0], train[train[:,2]==1,0])]
|
|
males = train[np.isin(train[:,0], train[train[:,2]==2,0])]
|
|
n_females = (train[:,2]==1).sum()
|
|
n_males = (train[:,2]==2).sum()
|
|
|
|
unique_male_indices = np.where(males[:-1,0] != males[1:,0])[0]
|
|
unique_female_indices = np.where(females[:-1,0] != females[1:,0])[0]
|
|
|
|
def calc_age_distribution(data, unique_indices):
|
|
ages = np.maximum(40, np.round(data[unique_indices, 1]/365.25) + 1)
|
|
counts = np.histogram(ages, np.arange(100))[0]
|
|
cumulative = -np.cumsum(counts)
|
|
return cumulative - cumulative[-1]
|
|
|
|
n_males = calc_age_distribution(males, unique_male_indices)
|
|
n_females = calc_age_distribution(females, unique_female_indices)
|
|
|
|
ukb_condition = (males[:,2] > 2) & (males[:,2] <= 4)
|
|
males_in_ukb = np.cumsum(np.histogram((males[ukb_condition, 1]/365.25).astype('int'), np.arange(100))[0])
|
|
|
|
ukb_condition = (females[:,2] > 2) & (females[:,2] <= 4)
|
|
females_in_ukb = np.cumsum(np.histogram((females[ukb_condition, 1]/365.25).astype('int'), np.arange(100))[0])
|
|
|
|
|
|
# ### Modelled age-incidence
|
|
|
|
# ### Selected diseases
|
|
#
|
|
# Delphi predicts the disease rate. Let's plot Delphi-predicted rates for the selected diseases vs age and compare them with the reported incidence rates (population averages from UKB).
|
|
#
|
|
# Shown in the graph are population average disease rates (solid lines), Delphi-predicted rates for arbitrary timepoints (pale dots) and Delphi-predicted rates for the penultimate step before disease (bright dots).
|
|
#
|
|
# Bright dots are often located above the population average rates, which indicates that Delphi correctly captures the elevated disease risk for such participants.
|
|
|
|
# In[15]:
|
|
|
|
|
|
def plot_age_incidence(ix, d, p, highlight_idx=0):
|
|
"""
|
|
Plot age-specific incidence rates for selected diseases.
|
|
|
|
Parameters:
|
|
-----------
|
|
ix : list or array
|
|
Indices of diseases to plot
|
|
d : tuple
|
|
Tuple containing disease data:
|
|
- d[0]: disease history
|
|
- d[1]: age information
|
|
- d[2]: disease labels
|
|
- d[3]: additional time information
|
|
p : torch.Tensor
|
|
Probability tensor from Delphi model
|
|
highlight_idx : int, default=0
|
|
Index of the case to highlight in the trajectory plot
|
|
|
|
Returns:
|
|
--------
|
|
None
|
|
Displays the plot but doesn't return any value
|
|
"""
|
|
# Calculate number of rows needed based on number of diseases
|
|
n_rows = (len(ix) - 1) // 5 + 1
|
|
fig, ax = plt.subplots(n_rows, 5, figsize=(18, 3 * n_rows), sharex=False, sharey=True)
|
|
axf = ax.ravel()
|
|
|
|
for i, k in enumerate(ix):
|
|
# Prepare data
|
|
x = d[1][:,:].detach().numpy() / 365.25
|
|
y = np.exp(p.detach().numpy()[:,:,k]) * 365.25
|
|
y = 1 - np.exp(-y)
|
|
|
|
# Filter for cases without prior disease
|
|
no_prior_disease = ~np.isin(d[0], k).any(axis=1)
|
|
sub_sample = np.random.randint(0, len(x[has_gender * no_prior_disease].ravel()), 5000)
|
|
|
|
# Plot background points
|
|
axf[i].scatter(
|
|
x[has_gender * no_prior_disease].ravel()[sub_sample],
|
|
y[has_gender * no_prior_disease].ravel()[sub_sample],
|
|
marker='.',
|
|
c=np.repeat(np.array([light_female, light_male])[0+is_male[has_gender * no_prior_disease]], x.shape[1]).ravel()[sub_sample],
|
|
edgecolors='white',
|
|
s=50,
|
|
label='Delphi, all time steps',
|
|
rasterized=True
|
|
)
|
|
|
|
# Plot points just before disease onset
|
|
has_k = np.where(d[2].detach().numpy()[has_gender] == k)[0]
|
|
before_k = d[2].detach().numpy()[has_gender].ravel() == k
|
|
axf[i].scatter(
|
|
x[has_gender].ravel()[before_k],
|
|
y[has_gender].ravel()[before_k],
|
|
marker='.',
|
|
c=np.array([dark_female, dark_male])[0+is_male[has_gender][has_k]],
|
|
edgecolors='white',
|
|
s=50,
|
|
label='Delphi, penultimate step before disease',
|
|
rasterized=True
|
|
)
|
|
|
|
# Plot selected case trajectory
|
|
j = np.where(np.isin(d[2], k).any(axis=1))[0][highlight_idx]
|
|
j0 = np.where(x[j] >= 0)[0][0]
|
|
jk = np.where(d[2][j,:].detach().numpy() == k)[0][0]
|
|
axf[i].plot(
|
|
x[j][j0:jk+1],
|
|
y[j][j0:jk+1],
|
|
ds='steps-post',
|
|
c='k',
|
|
ls="-",
|
|
marker='.',
|
|
markersize=8,
|
|
markeredgecolor='white',
|
|
markerfacecolor='k',
|
|
label='selected case'
|
|
)
|
|
axf[i].scatter(x[j][jk], y[j][jk], marker='.', s=200, edgecolors='white', c='k', zorder=3)
|
|
|
|
# Plot reported incidence rates
|
|
h, x = np.histogram(females[females[:,2]==k-1,1]/365.25, np.arange(100))
|
|
axf[i].stairs(h/n_females, x, color=normal_female, lw=2, label='reported incidence, female')
|
|
|
|
h, x = np.histogram(males[males[:,2]==k-1,1]/365.25, np.arange(100))
|
|
axf[i].stairs(h/n_males, x, color=normal_male, lw=2, label='reported incidence, male')
|
|
|
|
# Set plot properties
|
|
axf[i].set_ylim((1e-5, 1))
|
|
axf[i].set_xlim((0, 80))
|
|
axf[i].set_yscale('log')
|
|
axf[i].set_title("\n".join(textwrap.wrap(delphi_labels.loc[k,'name'], width=30)),
|
|
verticalalignment='top', fontsize=10, fontweight='bold')
|
|
|
|
if i % ax.shape[1] == 0:
|
|
axf[i].set_ylabel('Rate per year')
|
|
|
|
if i // ax.shape[1] == ax.shape[0] - 1:
|
|
axf[i].set_xlabel('Age')
|
|
|
|
if i == len(ix) - 1:
|
|
axf[i].legend(loc='center left', bbox_to_anchor=(1.05, 0.5))
|
|
|
|
|
|
# In[16]:
|
|
|
|
|
|
plot_age_incidence(diseases_of_interest, d, p, highlight_idx=0)
|
|
plt.gcf().tight_layout(h_pad=0.5)
|
|
plt.show()
|
|
|
|
|
|
# ### Calibration
|
|
# Delphi predicts the absolude disease rate. In this section, we evaluate how well Delphi's predictions match the observed disease rates in the UKB dataset.
|
|
#
|
|
# The strategy for calibration assesment is the following:
|
|
# 1. Run Delphi for the entire dataset
|
|
# 2. Stratify all participants into sex & age groups
|
|
# 3. For each age-sex group, split all participants into bins according to the predicted disease risk
|
|
# 4. For each bin, calculate the observed and predicted disease rates
|
|
# 5. Plot the calibration curve
|
|
#
|
|
|
|
# In[17]:
|
|
|
|
|
|
def auc(x1, x2):
|
|
"Calcualte AUC, given x1 vector of disease risks for cases and x2 vector of disease risks for controls"
|
|
n1 = len(x1)
|
|
n2 = len(x2)
|
|
R1 = np.concatenate([x1,x2]).argsort().argsort()[:n1].sum() + n1
|
|
U1 = n1*n2 + 0.5*n1*(n1+1) - R1
|
|
if n1 == 0 or n2 == 0:
|
|
return np.nan
|
|
return U1 / n1 / n2
|
|
|
|
|
|
# In[18]:
|
|
|
|
|
|
d100k = get_batch(range(dataset_subset_size), val, val_p2i,
|
|
select='left', block_size=128,
|
|
device=device, padding='random')
|
|
|
|
|
|
# In[19]:
|
|
|
|
|
|
p100k = []
|
|
model.to(device)
|
|
batch_size=256
|
|
with torch.no_grad():
|
|
for dd in tqdm(zip(*map(lambda x: torch.split(x, batch_size), d100k)), total=d100k[0].shape[0]//batch_size+1):
|
|
p100k.append(model(*[x.to(device) for x in dd])[0].cpu().detach()[:,:,diseases_of_interest].numpy())
|
|
p100k = np.vstack(p100k)
|
|
|
|
|
|
# In[20]:
|
|
|
|
|
|
import scipy
|
|
import warnings
|
|
|
|
def plot_calibration(disease_idx, data, logits, offset = 365.25, age_groups=range(45,85,5), n_samples=3, calibration = 'bins', binning='power', bins=10**np.arange(-6.,1.5,.5)):
|
|
"""
|
|
Plot calibration curves for disease predictions.
|
|
The selection of controls and cases in this function happens in the following way:
|
|
- For cases, we can just select the predicted disease rates corresponding to the moment before
|
|
occurrence of the disease (given the offset).
|
|
- For controls, there isn't a particular moment in time when the disease occurs, so we just
|
|
sample random moments of the trajectory.
|
|
|
|
Args:
|
|
disease_idx: Index of disease in the dataset
|
|
data: Tuple of tensors containing input data (tokens, times, targets, target_times)
|
|
logits: Model prediction logits
|
|
offset: Time offset in days (default: 365.25)
|
|
age_groups: Range of age groups to analyze (default: range(45,85,5))
|
|
n_samples: Number of samples (default: 3)
|
|
calibration: Calibration method, 'bins' or other (default: 'bins')
|
|
binning: Binning method, 'power' or 'deciles' (default: 'power')
|
|
bins: Bin edges for power binning (default: 10**np.arange(-6.,1.5,.5))
|
|
|
|
Returns:
|
|
List of calibration data for each age group
|
|
"""
|
|
|
|
l = len(age_groups)
|
|
age_step = age_groups[1] - age_groups[0]
|
|
|
|
fig, ax = plt.subplots(2, l, figsize=(20/8*l,3), sharex=True, sharey=False, height_ratios=[1, .5])
|
|
# Indices of cases
|
|
wk = np.where(data[2].detach().numpy()==disease_idx)
|
|
|
|
if len(wk[0])<2:
|
|
return np.repeat(np.nan, l)
|
|
|
|
# Indices of controls
|
|
wc = np.where(data[2].detach().numpy()!=disease_idx)
|
|
|
|
c_sub = range(wc[0].shape[0])
|
|
wall = (np.concatenate([wk[0], wc[0][c_sub]]), np.concatenate([wk[1], wc[1][c_sub]]))
|
|
|
|
pred_idx = (data[1][wall[0]] <= data[3][wall].reshape(-1,1) - offset).sum(1) -1
|
|
z = data[1].detach().numpy()[(wall[0], pred_idx)]
|
|
z = z[pred_idx != -1]
|
|
|
|
zk = data[3].detach().numpy()[wall] # Target ages, cases and controls
|
|
zk = zk[pred_idx != -1]
|
|
|
|
x = np.exp(logits[(wall[0], pred_idx)]) * 365.25 # Disease rates
|
|
x = x[pred_idx != -1]
|
|
x = 1 - np.exp(-x * age_step)
|
|
|
|
wk = (wk[0][pred_idx[:len(wk[0])] != -1], wk[1][pred_idx[:len(wk[0])] != -1])
|
|
p_idx = wall[0][pred_idx!=-1]
|
|
|
|
out = []
|
|
|
|
for i,aa in enumerate(age_groups):
|
|
ax_cal = ax[0, i] # Calibration plot
|
|
ax_box = ax[1, i] # Boxplot
|
|
|
|
a = np.logical_and(z / 365.25 >= aa, z / 365.25 < aa+ age_step)
|
|
a *= zk - z < 365.25 #* age_step
|
|
a *= np.isin(np.arange(a.shape[0]),np.unique(p_idx * a, return_index=True)[1]) # Mask duplicated people in age bracket
|
|
ax_box.boxplot((x[len(wk[0]):][a[len(wk[0]):]], x[:len(wk[0])][a[:len(wk[0])]]), vert=False, sym='.', widths=.5, whis=(5,95),
|
|
flierprops=dict(marker='.', markeredgecolor='white', markerfacecolor='k'))
|
|
ax_box.set_xscale('log')
|
|
ax_box.set_xlim((1e-5, 1))
|
|
ax_box.set_yticks((1,2), ['',''])
|
|
if i==0:
|
|
ax_cal.set_ylabel('Observed rate [1/yr]')
|
|
ax_box.set_yticks((1,2), (f'{["Healthy","Alive"][disease_idx==1268]}',f'{["Diseased","Deceased"][disease_idx==1268]}'))
|
|
y = auc(x[len(wk[0]):][a[len(wk[0]):]], x[:len(wk[0])][a[:len(wk[0])]])
|
|
|
|
foo =["dis'd","dec'd"]
|
|
ax_cal.text(0,.9, s= f'{len(x[len(wk[0]):][a[len(wk[0]):]])} {["healthy","alive"][disease_idx==1268]}\n{len(x[:len(wk[0])][a[:len(wk[0])]])} {foo[disease_idx==1268]}',
|
|
transform=ax_cal.transAxes, va='top')
|
|
ax_box.text(0.5, .8, s = f"AUC={y:.2}", transform=ax_box.transAxes, va='center', ha='center')
|
|
ax_box.set_xlabel('Predicted rate [1/yr]')
|
|
ax_box.set_ylim((0.5,3.5))
|
|
ax_cal.text(0.5, 1, s = f'{aa}-{aa+age_step}yr', transform=ax_cal.transAxes, va='bottom', ha='center', weight='bold')
|
|
|
|
|
|
xa = x[a]
|
|
ya = np.concatenate([np.ones(len(wk[0])), np.zeros(x.shape[0] - len(wk[0]))])[a]
|
|
|
|
if len(xa) == 0:
|
|
continue
|
|
|
|
|
|
if calibration == 'bins':
|
|
if binning == 'deciles':
|
|
bins = np.quantile(xa, np.arange(0,1.05,0.05))
|
|
else:
|
|
bins = bins
|
|
bin_masks = [np.logical_and(xa > bins[b-1], xa <= bins[b]) for b in range(1,len(bins))]
|
|
# np.errstate doesn't suppress RuntimeWarning, need to use warnings module
|
|
with warnings.catch_warnings():
|
|
warnings.filterwarnings('ignore', category=RuntimeWarning)
|
|
pred = np.array([xa[bin_mask].mean() for bin_mask in bin_masks])
|
|
obs = np.array([ya[bin_mask].mean() for bin_mask in bin_masks])
|
|
ci = np.array([scipy.stats.beta(0.1 + ya[bin_mask].sum(), 0.1 + (1-ya[bin_mask]).sum()).ppf([0.025,0.975]) for bin_mask in bin_masks])
|
|
ax_cal.scatter(pred, obs + 1e-5, marker='.', c='k')
|
|
for j,pr in enumerate(pred):
|
|
if not np.isnan(obs[j]):
|
|
ax_cal.plot( np.repeat(pr,2),ci[j], c='k', lw=.5, ls=":")
|
|
wgt = np.array([[ya[bin_mask].sum(),bin_mask.sum()] for bin_mask in bin_masks])
|
|
out.append([pred, obs, ci, wgt])
|
|
else:
|
|
o = np.argsort(xa)
|
|
ax_cal.plot(xa[o], ya[o]/(ya.sum() - np.cumsum(ya[o]))/age_step, ds='steps')
|
|
out.append(np.nan)
|
|
|
|
ax_cal.set_box_aspect(1)
|
|
ax_cal.scatter(xa.mean(), ya.mean(), c='r', ec='w')
|
|
ax_cal.set_yscale('log')
|
|
ax_cal.set_xscale('log')
|
|
ax_cal.set_ylim((1e-5, 1))
|
|
ax_cal.set_xlim((1e-5, 1))
|
|
ax_cal.plot([0, 1], [0, 1], transform=ax_cal.transAxes, lw=.5, c='k', ls="--")
|
|
|
|
return out
|
|
|
|
|
|
# In[21]:
|
|
|
|
|
|
out = []
|
|
plt.rcParams.update({'figure.max_open_warning': 0})
|
|
|
|
is_male = (d100k[0] == 2).sum(1)>0
|
|
is_female = (d100k[0] == 3).sum(1)>0
|
|
|
|
calibration_inputs = {
|
|
'male': {'data': [d_[is_male].cpu() for d_ in d100k], 'logits': p100k[is_male.cpu()]},
|
|
'female': {'data': [d_[is_female].cpu() for d_ in d100k], 'logits': p100k[is_female.cpu()]}
|
|
}
|
|
|
|
for j, k in enumerate(diseases_of_interest):
|
|
disease_name = delphi_labels.loc[k, 'name']
|
|
for sex in ['male', 'female']:
|
|
out.append(plot_calibration(k,calibration_inputs[sex]['data'], calibration_inputs[sex]['logits'][..., j], age_groups=np.arange(40,80,5), offset=0.1))
|
|
# plt.tight_layout()
|
|
plt.suptitle(disease_name, fontsize=10, weight='bold', ha='left', x=0.1, y=1.05)
|
|
plt.show()
|
|
|
|
|
|
# In[22]:
|
|
|
|
|
|
# the same calibrations curves as above, but a more compact version
|
|
|
|
from matplotlib.colors import LinearSegmentedColormap
|
|
|
|
fig, ax = plt.subplots(2,5,figsize=(18,6), sharex=True, sharey=True)
|
|
ax=ax.ravel()
|
|
for i, calibration_data in enumerate(out):
|
|
j = i // 2 # Females and males
|
|
is_male = i % 2 == 0
|
|
for age_bracket_idx, cal in enumerate(calibration_data):
|
|
if not isinstance(cal, list) and np.isnan(cal).all():
|
|
continue
|
|
intensity = 0.15+age_bracket_idx/9*.55
|
|
cmap = LinearSegmentedColormap.from_list('cmap',list(zip([0,.5,1],[['white',normal_male,dark_male], ['white',normal_female,dark_female]][is_male])))
|
|
ax[j].plot(cal[0], cal[1]**2/cal[1], label=f"{40+5*age_bracket_idx}-{40+5*(age_bracket_idx+1)}yrs", c=cmap(intensity))
|
|
ax[j].set_yscale('log')
|
|
ax[j].set_xscale('log')
|
|
ax[j].set_xlim(5e-5, 0.5)
|
|
ax[j].set_ylim(5e-5, 0.5)
|
|
ax[j].plot([0, 1], [0, 1], transform=ax[j].transAxes, lw=.5, c='k', ls="--")
|
|
ax[j].set_title("\n".join(textwrap.wrap(delphi_labels['name'].iloc[diseases_of_interest[j]],30)),verticalalignment='top', size=10, weight='bold')
|
|
ax[j].set_xlabel('Model rate [1/yr]')
|
|
ax[j].set_ylabel('Observed rate [1/yr]')
|
|
ax[j].label_outer()
|
|
|
|
ax[j].legend(loc='lower left', ncol=2, bbox_to_anchor=(1.05, 0))
|
|
|
|
plt.gcf().tight_layout(h_pad=0.5)
|
|
plt.show()
|
|
|
|
|
|
# ## AUC of disease prediction
|
|
#
|
|
# For evaluation of the AUCs, we use a similar strategy as in the calibration assesment.
|
|
#
|
|
# 1. Run Delphi for the entire dataset
|
|
# 2. Stratify all participants into sex & age groups - this is needed to regress out the "baseline" disease rate change - it's not that difficult to predict that older people have higher disease risk (for most diseases)
|
|
# 3. For each age-sex group, select controls and cases
|
|
# 4. Calculate the AUC using Delphi disease rates as predictors
|
|
# 5. (Optional) Use DeLong's method (recommended) or bootstrap to calculate the variance of the AUC
|
|
|
|
# In[23]:
|
|
|
|
|
|
from evaluate_auc import get_calibration_auc, evaluate_auc_pipeline
|
|
|
|
offset = 0.1
|
|
pred_idx_precompute = (d100k[1][:, :, np.newaxis] < d100k[3][:, np.newaxis, :] - offset).to(torch.float32).sum(1) - 1 # float comvertion saves memory (somehow)
|
|
pred_idx_precompute = pred_idx_precompute.to(torch.int32)
|
|
|
|
is_male = (d100k[0] == 2).sum(1)>0
|
|
is_female = (d100k[0] == 3).sum(1)>0
|
|
|
|
auc_inputs = {
|
|
'male': {
|
|
'data': [d_[is_male].cpu().numpy() for d_ in d100k],
|
|
'logits': p100k[is_male.cpu()],
|
|
'pred_idx_precompute': pred_idx_precompute[is_male].cpu().numpy()
|
|
},
|
|
'female': {
|
|
'data': [d_[is_female].cpu().numpy() for d_ in d100k],
|
|
'logits': p100k[is_female.cpu()],
|
|
'pred_idx_precompute': pred_idx_precompute[is_female].cpu().numpy()
|
|
}
|
|
}
|
|
|
|
|
|
# In[24]:
|
|
|
|
|
|
all_aucs = []
|
|
|
|
for disease_idx_batch, disease_idx in tqdm(enumerate(diseases_of_interest), total=len(diseases_of_interest)):
|
|
for sex in ['male', 'female']:
|
|
|
|
out = get_calibration_auc(
|
|
disease_idx_batch,
|
|
disease_idx,
|
|
auc_inputs[sex]['data'],
|
|
auc_inputs[sex]['logits'],
|
|
age_groups=np.arange(40, 80, 5),
|
|
offset=offset,
|
|
precomputed_idx=auc_inputs[sex]['pred_idx_precompute'],
|
|
use_delong=True,
|
|
)
|
|
|
|
if out is None:
|
|
continue
|
|
for out_item in out:
|
|
out_item["sex"] = sex
|
|
all_aucs.append(out_item)
|
|
|
|
|
|
# In[25]:
|
|
|
|
|
|
# this df contains AUC calculations for all diseases, sexes, and age groups
|
|
# to get the AUC for a specific disease, one needs to aggregate over the age groups and sexes
|
|
# however, while for the mean AUC this is straightforward, it's a bit more complicated for the variance
|
|
# as Delong's method provides confidence intervals as the form of variance of a normal distribution
|
|
# we can use the closed form of the variance of the mean of a normal distributions to get the variance of the AUC
|
|
# let's defile a custom funciton for it
|
|
|
|
def aggregate_normals(group):
|
|
# For normal distributions, when averaging them:
|
|
# The mean is the weighted average of means
|
|
# The variance of the sum is the sum of variances
|
|
# The variance of the average is the sum of variances divided by n^2
|
|
n = len(group)
|
|
mean = group['auc_delong'].mean()
|
|
# Since we're taking the average, divide combined variance by n^2
|
|
var = group['auc_variance_delong'].sum() / (n**2)
|
|
return pd.Series({
|
|
'auc': mean,
|
|
'auc_variance_delong': var,
|
|
'n_samples': n,
|
|
'n_diseased': group['n_diseased'].sum(),
|
|
'n_healthy': group['n_healthy'].sum(),
|
|
})
|
|
|
|
|
|
auc_df_all_brackets = pd.DataFrame(all_aucs)
|
|
auc_df = auc_df_all_brackets.groupby(['token']).apply(aggregate_normals, include_groups=False).reset_index()
|
|
auc_df = auc_df.merge(delphi_labels[['name', 'index']], left_on='token', right_on='index', how='inner')
|
|
auc_df
|
|
|
|
|
|
# In[26]:
|
|
|
|
|
|
plt.figure(figsize=(7, 5))
|
|
|
|
# Create the bar chart
|
|
bars = plt.bar(range(len(auc_df)), auc_df['auc'], color='skyblue')
|
|
|
|
plt.errorbar(
|
|
range(len(auc_df)),
|
|
auc_df['auc'],
|
|
yerr=1.96 * np.sqrt(auc_df['auc_variance_delong']),
|
|
fmt='none',
|
|
color='black',
|
|
capsize=0,
|
|
linewidth=1.0,
|
|
)
|
|
|
|
# Add labels and title
|
|
plt.xlabel('Disease')
|
|
plt.ylabel('AUC (sex & age stratified)')
|
|
plt.title('AUC for selected diseases with 95% confidence intervals')
|
|
plt.xticks(range(len(auc_df)), auc_df['name'], rotation=45, ha='right')
|
|
plt.gca().set_axisbelow(True)
|
|
plt.grid(axis='x', visible=False)
|
|
plt.axhline(0.5, color='k', linestyle='--', linewidth=0.75)
|
|
plt.ylim(0, 1.05)
|
|
plt.grid(axis='y', linestyle='--', alpha=0.7)
|
|
|
|
plt.tight_layout()
|
|
|
|
|
|
# ## AUC for the entire disease set
|
|
#
|
|
# Auc can be evaluated for all diseases, but it would take about 30 minutes to run for 100k trajectories with a gpu; much londer with a cpu.
|
|
#
|
|
# Therefore, we well use precomputed results here.
|
|
|
|
# In[27]:
|
|
|
|
|
|
# df_auc_unpooled_merged, df_auc_merged = evaluate_auc_pipeline(model,
|
|
# d100k,
|
|
# output_path=None,
|
|
# delphi_labels=delphi_labels[13:].index.values,
|
|
# diseases_of_interest=diseases_of_interest,
|
|
# filter_min_total=100, # remove rare diseases
|
|
# device=device,
|
|
# )
|
|
|
|
|
|
# In[28]:
|
|
|
|
|
|
df_auc_all_diseases = pd.read_csv('supplementary/delphi_auc.csv')
|
|
df_auc_all_diseases['mean_auc'] = df_auc_all_diseases[['AUC Female, (no gap)', 'AUC Male, (no gap)']].mean(axis=1)
|
|
|
|
|
|
# In[29]:
|
|
|
|
|
|
plt.figure(figsize=(7, 4))
|
|
plt.scatter(df_auc_all_diseases['N tokens, training'], df_auc_all_diseases['mean_auc'],
|
|
c=df_auc_all_diseases['Colour'], s=24, edgecolor='white', linewidth=0.65)
|
|
plt.axhline(0.5, color='k', linestyle='--', linewidth=0.75)
|
|
plt.title('AUC vs number of tokens in training set')
|
|
plt.xscale('log')
|
|
plt.ylim(0, 1.05)
|
|
plt.xlabel('Number of tokens in training set')
|
|
plt.ylabel('AUC')
|
|
plt.show()
|
|
|
|
|
|
# In[30]:
|
|
|
|
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
import matplotlib.patches as mpatches
|
|
|
|
filtered_df = df_auc_all_diseases.dropna(subset=['mean_auc'])
|
|
|
|
chapters = filtered_df['ICD-10 Chapter (short)'].unique()
|
|
chapter_data = {}
|
|
|
|
for chapter in chapters:
|
|
if chapter not in ['Technical', 'Sex', 'Smoking, Alcohol and BMI']: # Skip non-disease chapters
|
|
chapter_data[chapter] = filtered_df[filtered_df['ICD-10 Chapter (short)'] == chapter]['mean_auc'].values
|
|
|
|
fig, ax = plt.subplots(figsize=(8, 5))
|
|
|
|
chapter_colors = {}
|
|
for chapter in chapter_data.keys():
|
|
chapter_rows = filtered_df[filtered_df['ICD-10 Chapter (short)'] == chapter]
|
|
chapter_colors[chapter] = chapter_rows['Colour'].iloc[0]
|
|
|
|
positions = np.arange(1, len(chapter_data) + 1)
|
|
boxplots = []
|
|
|
|
for i, (chapter, values) in enumerate(chapter_data.items()):
|
|
bp = ax.boxplot(values, positions=[positions[i]], patch_artist=True,
|
|
widths=0.6, whis=[2.5, 97.5], showfliers=True,
|
|
boxprops={'linewidth': 1.25, 'facecolor': chapter_colors[chapter],
|
|
'edgecolor': chapter_colors[chapter]},
|
|
medianprops={'color': 'black', 'linewidth': 1.5},
|
|
whiskerprops={'color': 'gray', 'linewidth': 1},
|
|
capprops={'color': 'gray', 'linewidth': 1},
|
|
flierprops={'marker': 'x', 'markerfacecolor': 'none',
|
|
'markeredgecolor': 'black', 'markersize': 3, 'alpha': 0.3})
|
|
|
|
boxplots.append(bp)
|
|
|
|
ax.set_xticks(positions)
|
|
ax.set_xticklabels([chapter for chapter in chapter_data.keys()], rotation=45, ha='right')
|
|
|
|
ax.set_ylim(0, 1.025)
|
|
ax.axhline(0.5, color='black', linestyle='--', linewidth=0.75)
|
|
|
|
ax.yaxis.grid(True, linestyle='--', alpha=0.7)
|
|
ax.set_axisbelow(True)
|
|
|
|
ax.set_ylabel('AUC')
|
|
ax.set_xlabel('ICD-10 chapter')
|
|
ax.set_title('AUC, grouped by ICD-10 chapter', y=1.05)
|
|
|
|
plt.tight_layout()
|
|
plt.grid(axis='x', visible=False)
|
|
plt.show()
|
|
|
|
|
|
# In[31]:
|
|
|
|
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
import matplotlib.patches as mpatches
|
|
|
|
# Filter out rows with NaN values in mean_auc
|
|
filtered_df = df_auc_all_diseases.dropna(subset=['mean_auc'])
|
|
|
|
# Create separate data for males and females
|
|
male_data = filtered_df[filtered_df['AUC Male, (no gap)'].notna()]['AUC Male, (no gap)'].values
|
|
female_data = filtered_df[filtered_df['AUC Female, (no gap)'].notna()]['AUC Female, (no gap)'].values
|
|
|
|
# Set up the figure
|
|
fig, ax = plt.subplots(figsize=(1.75, 4))
|
|
|
|
# Define colors for male and female
|
|
male_color = normal_male
|
|
female_color = normal_female
|
|
|
|
# Create boxplots
|
|
positions = [1, 2]
|
|
boxplots = []
|
|
|
|
# Create boxplots for both sexes using a loop
|
|
sex_data = [female_data, male_data]
|
|
sex_colors = [female_color, male_color]
|
|
sex_labels = ['Female', 'Male']
|
|
|
|
for i in range(2):
|
|
bp = ax.boxplot(sex_data[i], positions=[positions[i]], patch_artist=True,
|
|
widths=0.6, whis=[2.5, 97.5], showfliers=True,
|
|
boxprops={'linewidth': 1.25, 'facecolor': sex_colors[i],
|
|
'edgecolor': sex_colors[i]},
|
|
medianprops={'color': 'black', 'linewidth': 1.5},
|
|
whiskerprops={'color': 'gray', 'linewidth': 1},
|
|
capprops={'color': 'gray', 'linewidth': 1},
|
|
flierprops={'marker': 'x', 'markerfacecolor': 'none',
|
|
'markeredgecolor': 'black', 'markersize': 3, 'alpha': 0.3})
|
|
boxplots.append(bp)
|
|
|
|
# Set x-axis labels
|
|
ax.set_xticks(positions)
|
|
ax.set_xticklabels(sex_labels)
|
|
|
|
# Set y-axis limits and add reference line
|
|
ax.set_ylim(0, 1.025)
|
|
ax.axhline(0.5, color='black', linestyle='--', linewidth=0.75)
|
|
|
|
# Add grid for y-axis only
|
|
ax.yaxis.grid(True, linestyle='--', alpha=0.7)
|
|
ax.set_axisbelow(True)
|
|
|
|
# Add labels and title
|
|
ax.set_ylabel('AUC')
|
|
ax.set_title('AUC, grouped by sex', y=1.05)
|
|
|
|
# Adjust layout
|
|
plt.tight_layout()
|
|
plt.grid(axis='x', visible=False)
|
|
|
|
plt.show()
|
|
|
|
|
|
# ## Interpretability
|
|
|
|
# ### Attention maps
|
|
#
|
|
# Being a transformer model, Delphi uses attention to aggregate information from the input tokens. Here, we plot the attention matrices for all heads and layers for a single trajectory.
|
|
#
|
|
# Note how different heads and layers attend to different parts of the input trajectory.
|
|
#
|
|
# Attention maps can be used for interpretability, however for a more robust interpretation, we suggest using SHAP values (`shap_analysis.ipynb`).
|
|
|
|
# In[32]:
|
|
|
|
|
|
d = get_batch([0], val, val_p2i, select='left', block_size=model.config.block_size, device=device)
|
|
|
|
risk = np.exp(model(d[0],d[1])[0].cpu().detach().numpy().squeeze())
|
|
att = model(d[0],d[1])[2].cpu().detach().numpy().squeeze()
|
|
fig, ax = plt.subplots(*att.shape[:2], figsize=(12,12), sharex=True, sharey=True)
|
|
for i in range(att.shape[0]):
|
|
for j in range(att.shape[1]):
|
|
ax[i,j].imshow(att[i,j], vmax=0.35)
|
|
if i==0:
|
|
ax[i,j].set_title(f"Head {j}")
|
|
if j==0:
|
|
ax[i,j].set_ylabel(f"Layer {i}")
|
|
plt.tight_layout()
|
|
|
|
|
|
# In[33]:
|
|
|
|
|
|
d = get_batch(range(dataset_subset_size), val, val_p2i,
|
|
select='left', block_size=48,
|
|
device=device, padding='random')
|
|
w = np.where(torch.isin(d[2].cpu(), torch.tensor(diseases_of_interest)).sum(axis=1))
|
|
w = (w[0][:3],)
|
|
att = model(*list(map(lambda x: x[w[0],:], d)))[2].cpu().detach().numpy().squeeze()
|
|
att.shape
|
|
|
|
|
|
# We can also plot average attention across all heads and layers to see which tokens are attended to most "on average".
|
|
#
|
|
# Generally, tokens tend to lose most of their importance pretty quickly. High attention for the most recent token in the trajectory is likely due to this tokens being used by the model to estimate the current age of the patient, which is a very important predictor for the overall disease risk.
|
|
|
|
# In[34]:
|
|
|
|
|
|
import textwrap
|
|
|
|
d = [d_.cpu() for d_ in d]
|
|
|
|
for i in range(len(w[0])):
|
|
print(i)
|
|
j = (d[0][w[0][i]]==0).sum()
|
|
plt.figure(figsize=(3 * (d[3][w[0][i],-1]-d[1][w[0][i],0])/365.25/70,9 * (48-j)/48))
|
|
x = torch.concatenate([d[1][w[0][i]], d[3][w[0][i],[-1]]])/365.25
|
|
plt.pcolormesh( x[j:],np.arange(j,49,1), att[0,i,:,j:,j:].max((0)).T, cmap='Blues')
|
|
_ = plt.yticks(np.arange(j,48)+.5, [f"{textwrap.shorten(delphi_labels.loc[i,'name'],50)}" if i > 1 else "" for i,t in zip(d[0][w[0][i],j:].detach().numpy().squeeze(),d[1][w[0][i],j:].detach().numpy().squeeze()/365.25)])
|
|
plt.gca().invert_yaxis()
|
|
plt.xlabel('Age')
|
|
plt.show()
|
|
|
|
|
|
# ## Embeddings
|
|
#
|
|
# Lastly, it's interesting to look into the learned latent space of the model.
|
|
#
|
|
# Here, we plot the UMAP of the learned disease embeddings.
|
|
#
|
|
# We see that diseases cluster by their ICD-10 chapter - which is interesting, because the model had no knowledge about the ICD-10 hierarchy during training; all diseases were treated equally.
|
|
|
|
# In[35]:
|
|
|
|
|
|
import umap
|
|
import matplotlib as mpl
|
|
|
|
|
|
# In[36]:
|
|
|
|
|
|
wte = model.transformer.wte.weight.cpu().detach().numpy()
|
|
seed = 1413
|
|
t = umap.UMAP(random_state=seed, n_neighbors=30, min_dist=0.05, metric='cosine').fit(wte)
|
|
|
|
u0 = t.transform(model.transformer.wte.weight.cpu().detach().numpy())
|
|
u = u0 - np.median(u0, axis=0)
|
|
u = - u
|
|
|
|
|
|
# In[37]:
|
|
|
|
|
|
def remove_ticks(ax):
|
|
ax.set_xticklabels([])
|
|
ax.set_yticklabels([])
|
|
|
|
for tick in ax.xaxis.get_major_ticks():
|
|
tick.tick1line.set_visible(False)
|
|
tick.tick2line.set_visible(False)
|
|
|
|
for tick in ax.yaxis.get_major_ticks():
|
|
tick.tick1line.set_visible(False)
|
|
tick.tick2line.set_visible(False)
|
|
|
|
|
|
# In[38]:
|
|
|
|
|
|
labels_all = pd.read_csv('delphi_labels_chapters_colours_icd.csv')
|
|
labels_all['UMAP1'] = u[:,0]
|
|
labels_all['UMAP2'] = u[:,1]
|
|
labels_all = labels_all[labels_all['count'] > 20].reset_index(drop=True).reset_index()
|
|
labels_non_technical = labels_all[~labels_all['ICD-10 Chapter'].isin(['Technical', 'Sex', 'Smoking, Alcohol and BMI'])]
|
|
labels_non_technical = labels_non_technical[(labels_non_technical['UMAP1'].abs() < 5) & (labels_non_technical['UMAP2'].abs() < 5)]
|
|
short_names = labels_all['ICD-10 Chapter (short)'].unique()
|
|
short_names_present = [i for i in short_names if i in labels_non_technical['ICD-10 Chapter (short)'].unique()]
|
|
color_mapping_short = {k: v for k, v in labels_all[['ICD-10 Chapter (short)', 'color']].values}
|
|
|
|
|
|
# In[39]:
|
|
|
|
|
|
import seaborn as sns
|
|
|
|
fig, ax = plt.subplots(figsize=(8, 8))
|
|
|
|
sns.scatterplot(x='UMAP1', y='UMAP2', data=labels_non_technical, hue='ICD-10 Chapter (short)',
|
|
palette=color_mapping_short,
|
|
hue_order=short_names_present, size='count', sizes=(20, 200),
|
|
alpha=0.9, ax=ax, linewidth=0.15)
|
|
|
|
ax.legend_.set_bbox_to_anchor((1.1, 0.85))
|
|
ax.grid(None)
|
|
remove_ticks(ax)
|
|
ax.set_aspect('equal')
|
|
plt.title('UMAP of learned disease embeddings');
|
|
|
|
|
|
# ## The End!
|
|
#
|
|
# If you want to learn more about Delphi, check out the `shap_analysis.ipynb` notebook next, where we use SHAP values to interpret the model's predictions.
|