Files
DeepHealth/models.py
Jiarui Li d4d25ac9c7 feat: Add covariate-aware model and piecewise encoder
Introduce PiecewiseLinearEncoder for continuous variable encoding.

Add CovariateAwareGPT2 to extend TimeAwareGPT2 with static and time-varying covariate processing.

The model combines piecewise linear and sinusoidal encodings for covariates and integrates them via concatenation before a final MLP head.

Reorganize models.py for better logical structure.
2025-10-17 12:04:50 +08:00

375 lines
14 KiB
Python

import torch
import torch.nn as nn
from torch.nn import functional as F
from typing import Tuple
# =============================================================================
# 1. Component Modules (Building Blocks)
# =============================================================================
class Block(nn.Module):
""" an unassuming Transformer block """
def __init__(self, n_embd: int, n_head: int, pdrop: float):
super().__init__()
self.n_head = n_head
self.ln_1 = nn.LayerNorm(n_embd)
self.attn = nn.MultiheadAttention(n_embd, n_head, dropout=pdrop, batch_first=True)
self.ln_2 = nn.LayerNorm(n_embd)
self.mlp = nn.ModuleDict(dict(
c_fc = nn.Linear(n_embd, 4 * n_embd),
c_proj = nn.Linear(4 * n_embd, n_embd),
act = nn.GELU(),
dropout = nn.Dropout(pdrop),
))
m = self.mlp
self.mlpf = lambda x: m.dropout(m.c_proj(m.act(m.c_fc(x)))) # MLP forward
self.resid_dropout = nn.Dropout(pdrop)
def forward(self, x: torch.Tensor, custom_mask: torch.Tensor) -> torch.Tensor:
normed_x = self.ln_1(x)
attn_mask = ~custom_mask
attn_mask = attn_mask.repeat_interleave(self.n_head, dim=0)
attn_output, _ = self.attn(normed_x, normed_x, normed_x, attn_mask=attn_mask, need_weights=False)
x = x + self.resid_dropout(attn_output)
x = x + self.mlpf(self.ln_2(x))
return x
class AgeSinusoidalEncoding(nn.Module):
"""
Encodes age using sinusoidal functions, similar to positional encodings
in Transformers. This module creates a fixed-size embedding for an age
value given in days.
"""
def __init__(self, embedding_dim: int):
"""
Initializes the AgeSinusoidalEncoding module.
Args:
embedding_dim (int): The dimensionality of the output embedding.
Must be an even number.
Raises:
ValueError: If embedding_dim is not an even number.
"""
super().__init__()
if embedding_dim % 2 != 0:
raise ValueError(f"Embedding dimension must be an even number, but got {embedding_dim}")
self.embedding_dim = embedding_dim
# Pre-calculate the divisor term for the sinusoidal formula.
i = torch.arange(0, self.embedding_dim, 2, dtype=torch.float32)
divisor = torch.pow(10000, i / self.embedding_dim)
self.register_buffer('divisor', divisor)
def forward(self, t: torch.Tensor) -> torch.Tensor:
"""
Forward pass for the AgeSinusoidalEncoding.
Args:
t (torch.Tensor): A tensor of shape (batch_size, sequence_length)
with dtype=torch.float32, representing age in days.
Returns:
torch.Tensor: The encoded age tensor of shape
(batch_size, sequence_length, embedding_dim).
"""
t_years = t / 365.25
args = t_years.unsqueeze(-1) * self.divisor.view(1, 1, -1)
output = torch.zeros(t.shape[0], t.shape[1], self.embedding_dim, device=t.device)
output[:, :, 0::2] = torch.cos(args)
output[:, :, 1::2] = torch.sin(args)
return output
class PiecewiseLinearEncoder(nn.Module):
"""
Encodes continuous variables using piecewise linear encoding.
This module defines bins based on standard normal distribution quantiles,
encodes an input by finding its bin, and calculates its position as a
linear interpolation between boundaries. The result is projected to the
final embedding dimension by a shared linear layer.
"""
def __init__(self, num_bins: int, embedding_dim: int):
"""
Initializes the PiecewiseLinearEncoder module.
Args:
num_bins (int): The number of bins for the encoding.
embedding_dim (int): The dimensionality of the output embedding (D).
"""
super().__init__()
if num_bins <= 0:
raise ValueError("num_bins must be a positive integer.")
self.num_bins = num_bins
self.embedding_dim = embedding_dim
if num_bins > 1:
quantiles = torch.linspace(1.0 / num_bins, (num_bins - 1.0) / num_bins, num_bins - 1)
normal_dist = torch.distributions.normal.Normal(0, 1)
boundaries = normal_dist.icdf(quantiles)
else:
boundaries = torch.tensor([])
boundaries = torch.cat([
torch.tensor([float('-inf')]),
boundaries,
torch.tensor([float('inf')])
])
self.register_buffer('boundaries', boundaries)
self.linear = nn.Linear(num_bins, embedding_dim)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Forward pass for the piecewise linear encoding.
Args:
x (torch.Tensor): Input tensor of shape (*, N), where * is any
number of batch dimensions and N is the number of continuous
features. Assumed to be pre-scaled.
Returns:
torch.Tensor: Encoded tensor of shape (*, N, D).
"""
original_shape = x.shape
x = x.reshape(-1, original_shape[-1])
bin_indices = torch.searchsorted(self.boundaries, x, right=True) - 1
bin_indices = bin_indices.clamp(0, self.num_bins - 1)
lower_bounds = self.boundaries[bin_indices]
upper_bounds = self.boundaries[bin_indices + 1]
delta = upper_bounds - lower_bounds + 1e-8
weight_upper = (x - lower_bounds) / delta
weight_lower = 1.0 - weight_upper
is_first_bin = (bin_indices == 0)
is_last_bin = (bin_indices == self.num_bins - 1)
weight_lower[is_first_bin] = 1.0
weight_upper[is_first_bin] = 0.0
weight_lower[is_last_bin] = 0.0
weight_upper[is_last_bin] = 1.0
encoded = torch.zeros(*x.shape, self.num_bins, device=x.device, dtype=x.dtype)
encoded.scatter_(-1, bin_indices.unsqueeze(-1), weight_lower.unsqueeze(-1))
upper_indices = (bin_indices + 1).clamp(max=self.num_bins - 1)
encoded.scatter_add_(-1, upper_indices.unsqueeze(-1), weight_upper.unsqueeze(-1))
encoded = encoded.view(*original_shape, self.num_bins)
output = self.linear(encoded)
return output
# =============================================================================
# 2. Main Model Architectures
# =============================================================================
class TimeAwareGPT2(nn.Module):
"""
A time-aware GPT-2 model with custom temporal features.
"""
def __init__(self, vocab_size: int, n_embd: int, n_layer: int, n_head: int, pdrop: float, token_pdrop: float):
super().__init__()
self.token_pdrop = token_pdrop
self.wte = nn.Embedding(vocab_size, n_embd)
self.age_encoder = AgeSinusoidalEncoding(n_embd)
self.drop = nn.Dropout(pdrop)
self.blocks = nn.ModuleList([Block(n_embd, n_head, pdrop) for _ in range(n_layer)])
self.ln_f = nn.LayerNorm(n_embd)
self.head = nn.Linear(n_embd, vocab_size, bias=False)
self.n_embd = n_embd
def forward(self, event_seq: torch.Tensor, time_seq: torch.Tensor) -> torch.Tensor:
"""
Forward pass for the TimeAwareGPT2 model.
Args:
event_seq (torch.Tensor): Token indices of shape (B, L).
time_seq (torch.Tensor): Timestamps for each event of shape (B, L).
Returns:
torch.Tensor: Logits of shape (B, L, vocab_size).
"""
B, L = event_seq.size()
token_embeddings = self.wte(event_seq)
if self.training and self.token_pdrop > 0:
drop_mask = torch.rand(token_embeddings.shape[:2], device=token_embeddings.device) < self.token_pdrop
token_embeddings[drop_mask] = 0.0
pos_embeddings = self.age_encoder(time_seq.float())
x = self.drop(token_embeddings + pos_embeddings)
t_i = time_seq.unsqueeze(-1)
t_j = time_seq.unsqueeze(1)
time_mask = (t_j < t_i)
padding_mask = (event_seq != 0).unsqueeze(1)
combined_mask = time_mask & padding_mask
is_row_all_zero = ~combined_mask.any(dim=-1)
is_not_padding = (event_seq != 0)
force_self_attention = is_row_all_zero & is_not_padding
combined_mask.diagonal(dim1=-2, dim2=-1)[force_self_attention] = True
for block in self.blocks:
x = block(x, custom_mask=combined_mask)
x = self.ln_f(x)
logits = self.head(x)
return logits
def get_num_params(self) -> float:
"""
Returns the number of trainable parameters in the model in millions.
"""
return sum(p.numel() for p in self.parameters() if p.requires_grad) / 1e6
class CovariateAwareGPT2(nn.Module):
"""
Extends TimeAwareGPT2 to incorporate static and time-varying covariates.
"""
def __init__(self, vocab_size: int, n_embd: int, n_layer: int, n_head: int,
pdrop: float, token_pdrop: float, num_bins: int):
"""
Initializes the CovariateAwareGPT2 model.
Args:
vocab_size (int): Size of the event vocabulary.
n_embd (int): Embedding dimensionality.
n_layer (int): Number of transformer layers.
n_head (int): Number of attention heads.
pdrop (float): Dropout probability for layers.
token_pdrop (float): Dropout probability for input token embeddings.
num_bins (int): Number of bins for the PiecewiseLinearEncoder.
"""
super().__init__()
self.token_pdrop = token_pdrop
self.wte = nn.Embedding(vocab_size, n_embd)
self.age_encoder = AgeSinusoidalEncoding(n_embd)
self.drop = nn.Dropout(pdrop)
self.blocks = nn.ModuleList([Block(n_embd, n_head, pdrop) for _ in range(n_layer)])
self.n_embd = n_embd
self.cov_encoder = PiecewiseLinearEncoder(num_bins=num_bins, embedding_dim=n_embd)
self.ln_f = nn.LayerNorm(2 * n_embd)
self.head = nn.Sequential(
nn.Linear(2 * n_embd, n_embd),
nn.GELU(),
nn.Linear(n_embd, vocab_size)
)
def forward(self, x: torch.Tensor, t: torch.Tensor, cov: torch.Tensor, cov_t: torch.Tensor) -> torch.Tensor:
"""
Forward pass for the CovariateAwareGPT2 model.
Args:
x (torch.Tensor): Event sequence tensor of shape (B, L).
t (torch.Tensor): Time sequence tensor of shape (B, L).
cov (torch.Tensor): Covariate tensor of shape (B, N).
cov_t (torch.Tensor): Covariate time tensor of shape (B).
Returns:
torch.Tensor: Logits of shape (B, L, vocab_size).
"""
B, L = x.size()
cov_encoded = self.cov_encoder(cov).sum(dim=1).unsqueeze(1)
cov_t_encoded = self.age_encoder(t - cov_t.unsqueeze(1))
cov_embed = cov_encoded + cov_t_encoded
token_embeddings = self.wte(x)
if self.training and self.token_pdrop > 0:
drop_mask = torch.rand(token_embeddings.shape[:2], device=token_embeddings.device) < self.token_pdrop
token_embeddings[drop_mask] = 0.0
pos_embeddings = self.age_encoder(t.float())
seq_embed = self.drop(token_embeddings + pos_embeddings)
t_i = t.unsqueeze(-1)
t_j = t.unsqueeze(1)
time_mask = (t_j < t_i)
padding_mask = (x != 0).unsqueeze(1)
combined_mask = time_mask & padding_mask
is_row_all_zero = ~combined_mask.any(dim=-1)
is_not_padding = (x != 0)
force_self_attention = is_row_all_zero & is_not_padding
combined_mask.diagonal(dim1=-2, dim2=-1)[force_self_attention] = True
block_output = seq_embed
for block in self.blocks:
block_output = block(block_output, custom_mask=combined_mask)
integrated_embed = torch.cat([block_output, cov_embed], dim=-1)
final_output = self.ln_f(integrated_embed)
logits = self.head(final_output)
return logits
def get_num_params(self) -> float:
"""
Returns the number of trainable parameters in the model in millions.
"""
return sum(p.numel() for p in self.parameters() if p.requires_grad) / 1e6
# =============================================================================
# 3. Loss Function
# =============================================================================
class CombinedLoss(nn.Module):
"""
Computes a two-part loss: a standard cross-entropy loss for event type
prediction and a survival analysis loss for event timing.
"""
def __init__(self, ignored_token_ids: list[int]):
"""
Initializes the CombinedLoss module.
Args:
ignored_token_ids (list[int]): A list of event type IDs to be
excluded from all loss calculations.
"""
super().__init__()
self.ignored_token_ids = ignored_token_ids
def forward(self, logits: torch.Tensor, x: torch.Tensor, t: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Calculates the combined cross-entropy and survival loss.
Args:
logits (torch.Tensor): Raw model outputs of shape (B, L, N).
x (torch.Tensor): Ground-truth event labels of shape (B, L).
t (torch.Tensor): True time duration for each event, shape (B, L).
Returns:
A tuple containing the two scalar loss tensors: (loss_ce, loss_survival).
"""
mask = torch.ones_like(x, dtype=torch.bool)
for token_id in self.ignored_token_ids:
mask = mask & (x != token_id)
if not mask.any():
return torch.tensor(0.0, device=logits.device), torch.tensor(0.0, device=logits.device)
logits_for_ce = logits.permute(0, 2, 1)
per_element_ce = F.cross_entropy(logits_for_ce, x, reduction='none')
loss_ce = per_element_ce[mask].mean()
intensity = torch.sum(torch.exp(logits), dim=2)
per_element_survival = -(torch.log(intensity + 1e-8) - intensity * t)
loss_survival = per_element_survival[mask].mean()
return loss_ce, loss_survival