Files
DeepHealth/evaluate_auc.py

495 lines
17 KiB
Python

import scipy.stats
import scipy
import warnings
import torch
from models import TimeAwareGPT2
from tqdm import tqdm
import pandas as pd
import numpy as np
import argparse
from utils import load_model, get_batch, PatientEventDataset
from pathlib import Path
from joblib import Parallel, delayed
def auc(x1, x2):
n1 = len(x1)
n2 = len(x2)
R1 = np.concatenate([x1, x2]).argsort().argsort()[:n1].sum() + n1
U1 = n1 * n2 + 0.5 * n1 * (n1 + 1) - R1
if n1 == 0 or n2 == 0:
return np.nan
return U1 / n1 / n2
def get_common_diseases(delphi_labels, filter_min_total=100):
chapters_of_interest = [
"I. Infectious Diseases",
"II. Neoplasms",
"III. Blood & Immune Disorders",
"IV. Metabolic Diseases",
"V. Mental Disorders",
"VI. Nervous System Diseases",
"VII. Eye Diseases",
"VIII. Ear Diseases",
"IX. Circulatory Diseases",
"X. Respiratory Diseases",
"XI. Digestive Diseases",
"XII. Skin Diseases",
"XIII. Musculoskeletal Diseases",
"XIV. Genitourinary Diseases",
"XV. Pregnancy & Childbirth",
"XVI. Perinatal Conditions",
"XVII. Congenital Abnormalities",
"Death",
]
labels_df = delphi_labels[
delphi_labels["ICD-10 Chapter (short)"].isin(chapters_of_interest) * (delphi_labels["count"] > filter_min_total)
]
return labels_df["index"].tolist()
def optimized_bootstrapped_auc_gpu(case, control, n_bootstrap=1000):
"""
Computes bootstrapped AUC estimates using PyTorch on CUDA.
Parameters:
case: 1D tensor of scores for positive cases
control: 1D tensor of scores for controls
n_bootstrap: Number of bootstrap replicates
Returns:
Tensor of shape (n_bootstrap,) containing AUC for each bootstrap replicate
"""
if not torch.cuda.is_available():
raise RuntimeError("CUDA is not available. This function requires a GPU.")
# Convert inputs to CUDA tensors
if not torch.is_tensor(case):
case = torch.tensor(case, device="cuda", dtype=torch.float32)
else:
case = case.to("cuda", dtype=torch.float32)
if not torch.is_tensor(control):
control = torch.tensor(control, device="cuda", dtype=torch.float32)
else:
control = control.to("cuda", dtype=torch.float32)
n_case = case.size(0)
n_control = control.size(0)
total = n_case + n_control
# Generate bootstrap samples
boot_idx_case = torch.randint(0, n_case, (n_bootstrap, n_case), device="cuda")
boot_idx_control = torch.randint(0, n_control, (n_bootstrap, n_control), device="cuda")
boot_case = case[boot_idx_case]
boot_control = control[boot_idx_control]
combined = torch.cat([boot_case, boot_control], dim=1)
# Mask to identify case entries
mask = torch.zeros((n_bootstrap, total), dtype=torch.bool, device="cuda")
mask[:, :n_case] = True
# Compute ranks and AUC
ranks = combined.argsort(dim=1).argsort(dim=1)
case_ranks_sum = torch.sum(ranks.float() * mask.float(), dim=1)
min_case_rank_sum = n_case * (n_case - 1) / 2.0
U = case_ranks_sum - min_case_rank_sum
aucs = U / (n_case * n_control)
return aucs.cpu().tolist()
# AUC comparison adapted from
# https://github.com/Netflix/vmaf/
def compute_midrank(x):
"""Computes midranks.
Args:
x - a 1D numpy array
Returns:
array of midranks
"""
J = np.argsort(x)
Z = x[J]
N = len(x)
T = np.zeros(N, dtype=np.float32)
i = 0
while i < N:
j = i
while j < N and Z[j] == Z[i]:
j += 1
T[i:j] = 0.5 * (i + j - 1)
i = j
T2 = np.empty(N, dtype=np.float32)
# Note(kazeevn) +1 is due to Python using 0-based indexing
# instead of 1-based in the AUC formula in the paper
T2[J] = T + 1
return T2
def fastDeLong(predictions_sorted_transposed, label_1_count):
"""
The fast version of DeLong's method for computing the covariance of
unadjusted AUC.
Args:
predictions_sorted_transposed: a 2D numpy.array[n_classifiers, n_examples]
sorted such as the examples with label "1" are first
Returns:
(AUC value, DeLong covariance)
Reference:
@article{sun2014fast,
title={Fast Implementation of DeLong's Algorithm for
Comparing the Areas Under Correlated Receiver Operating Characteristic Curves},
author={Xu Sun and Weichao Xu},
journal={IEEE Signal Processing Letters},
volume={21},
number={11},
pages={1389--1393},
year={2014},
publisher={IEEE}
}
"""
# Short variables are named as they are in the paper
m = label_1_count
n = predictions_sorted_transposed.shape[1] - m
positive_examples = predictions_sorted_transposed[:, :m]
negative_examples = predictions_sorted_transposed[:, m:]
k = predictions_sorted_transposed.shape[0]
tx = np.empty([k, m], dtype=np.float32)
ty = np.empty([k, n], dtype=np.float32)
tz = np.empty([k, m + n], dtype=np.float32)
for r in range(k):
tx[r, :] = compute_midrank(positive_examples[r, :])
ty[r, :] = compute_midrank(negative_examples[r, :])
tz[r, :] = compute_midrank(predictions_sorted_transposed[r, :])
aucs = tz[:, :m].sum(axis=1) / m / n - float(m + 1.0) / 2.0 / n
v01 = (tz[:, :m] - tx[:, :]) / n
v10 = 1.0 - (tz[:, m:] - ty[:, :]) / m
sx = np.cov(v01)
sy = np.cov(v10)
delongcov = sx / m + sy / n
return aucs, delongcov
def compute_ground_truth_statistics(ground_truth):
assert np.array_equal(np.unique(ground_truth), [0, 1])
order = (-ground_truth).argsort()
label_1_count = int(ground_truth.sum())
return order, label_1_count
def get_auc_delong_var(healthy_scores, diseased_scores):
"""
Computes ROC AUC value and variance using DeLong's method
Args:
healthy_scores: Values for class 0 (healthy/controls)
diseased_scores: Values for class 1 (diseased/cases)
Returns:
AUC value and variance
"""
# Create ground truth labels (1 for diseased, 0 for healthy)
ground_truth = np.array([1] * len(diseased_scores) + [0] * len(healthy_scores))
predictions = np.concatenate([diseased_scores, healthy_scores])
# Compute statistics needed for DeLong method
order, label_1_count = compute_ground_truth_statistics(ground_truth)
predictions_sorted_transposed = predictions[np.newaxis, order]
# Calculate AUC and covariance
aucs, delongcov = fastDeLong(predictions_sorted_transposed, label_1_count)
assert len(aucs) == 1, "There is a bug in the code, please forward this to the developers"
return aucs[0], delongcov
def get_calibration_auc(j, k, d, p, offset=365.25, age_groups=range(45, 80, 5), precomputed_idx=None, n_bootstrap=1, use_delong=False):
age_step = age_groups[1] - age_groups[0]
# Indexes of cases with disease k
wk = np.where(d[2] == k)
if len(wk[0]) < 2:
return None
# For controls, we need to exclude cases with disease k
wc = np.where((d[2] != k) & (~(d[2] == k).any(-1))[..., None])
wall = (np.concatenate([wk[0], wc[0]]), np.concatenate([wk[1], wc[1]])) # All cases and controls
# We need to take into account the offset t and use the tokens for prediction that are at least t before the event
if precomputed_idx is None:
pred_idx = (d[1][wall[0]] <= d[3][wall].reshape(-1, 1) - offset).sum(1) - 1
else:
pred_idx = precomputed_idx[wall] # It's actually much faster to precompute this
valid_indices = pred_idx != -1
pred_idx = pred_idx[valid_indices]
wall = (wall[0][valid_indices], wall[1][valid_indices])
z = d[1][(wall[0], pred_idx)] # Times of the tokens for prediction
zk = d[3][wall] # Target times
x = p[..., j][(wall[0], pred_idx)]
p_idx = wall[0]
out = []
for i, aa in enumerate(age_groups):
a = (z / 365.25 >= aa) & (z / 365.25 < aa + age_step)
if not np.any(a):
continue
selected_groups = p_idx[a]
_, unique_indices = np.unique(selected_groups, return_index=True)
a_filtered = a[a]
a_filtered[:] = False
a_filtered[unique_indices] = True
a[a] = a_filtered
is_case = np.zeros_like(x, dtype=bool)
is_case[:len(wk[0])] = True
control = x[~is_case & a]
case = x[is_case & a]
if len(control) == 0 or len(case) == 0:
continue
if use_delong:
auc_value_delong, auc_variance_delong = get_auc_delong_var(control, case)
auc_delong_dict = {"auc_delong": auc_value_delong, "auc_variance_delong": auc_variance_delong}
else:
auc_delong_dict = {}
if n_bootstrap > 1:
aucs_bootstrapped = optimized_bootstrapped_auc_gpu(case, control, n_bootstrap)
for bootstrap_idx in range(n_bootstrap):
y = auc_value_delong if n_bootstrap == 1 else aucs_bootstrapped[bootstrap_idx]
out_item = {
"token": k,
"auc": y,
"age": aa,
"n_healthy": len(control),
"n_diseased": len(case),
}
out.append(out_item | auc_delong_dict)
if n_bootstrap > 1:
out_item["bootstrap_idx"] = bootstrap_idx
return out
def process_chunk(disease_chunk_idx, diseases_chunk, d100k, p100k, pred_idx_precompute, age_groups, offset, n_bootstrap):
all_aucs = []
for sex, sex_idx in [("female", 2), ("male", 3)]:
sex_mask = ((d100k[0] == sex_idx).sum(1) > 0).cpu().detach().numpy()
p_sex = p100k[sex_mask]
d100k_sex = [d_.cpu().detach().numpy()[sex_mask] for d_ in d100k]
precomputed_idx_subset = pred_idx_precompute[sex_mask].cpu().detach().numpy()
for j, k in tqdm(
list(enumerate(diseases_chunk)), desc=f"Processing diseases in chunk {disease_chunk_idx}, {sex}"
):
out = get_calibration_auc(
j,
k,
d100k_sex,
p_sex,
age_groups=age_groups,
offset=offset,
precomputed_idx=precomputed_idx_subset,
n_bootstrap=n_bootstrap,
use_delong=True,
)
if out is None:
continue
for out_item in out:
out_item["sex"] = sex
all_aucs.append(out_item)
return all_aucs
# New internal function that performs the AUC evaluation pipeline.
def evaluate_auc_pipeline(
model,
d100k,
output_path,
delphi_labels,
diseases_of_interest=None,
filter_min_total=100,
disease_chunk_size=200,
age_groups=np.arange(40, 80, 5),
offset=0.1,
batch_size=256,
device="cpu",
seed=1337,
n_bootstrap=1,
meta_info={},
n_jobs=-1,
):
"""
Runs the AUC evaluation pipeline.
Args:
model (torch.nn.Module): The loaded model set to eval().
d100k (tuple): Data batch from get_batch.
delphi_labels (pd.DataFrame): DataFrame with label info (token names, etc. "delphi_labels_chapters_colours_icd.csv").
output_path (str | None): Directory where CSV files will be written. If None, files will not be saved.
diseases_of_interest (np.ndarray or list, optional): If provided, these disease indices are used.
filter_min_total (int): Minimum total token count to include a token.
disease_chunk_size (int): Maximum chunk size for processing diseases.
age_groups (np.ndarray): Age groups to use in calibration.
offset (float): Offset used in get_calibration_auc.
batch_size (int): Batch size for model forwarding.
device (str): Device identifier.
seed (int): Random seed for reproducibility.
n_bootstrap (int): Number of bootstrap samples. (1 for no bootstrap)
n_jobs (int): Number of parallel jobs to run.
Returns:
tuple: (df_auc_unpooled, df_auc, df_both) DataFrames.
"""
assert n_bootstrap > 0, "n_bootstrap must be greater than 0"
# Set random seeds
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
# Get common diseases
if diseases_of_interest is None:
diseases_of_interest = get_common_diseases(delphi_labels, filter_min_total)
# Split diseases into chunks for processing
num_chunks = (len(diseases_of_interest) + disease_chunk_size - 1) // disease_chunk_size
diseases_chunks = np.array_split(diseases_of_interest, num_chunks)
# Precompute prediction indices for calibration
pred_idx_precompute = (d100k[1][:, :, np.newaxis] < d100k[3][:, np.newaxis, :] - offset).sum(1) - 1
p100k = []
model.to(device)
with torch.no_grad():
for dd in tqdm(
zip(*[torch.split(x, batch_size) for x in d100k]),
desc=f"Model inference",
total=d100k[0].shape[0] // batch_size + 1,
):
dd = [x.to(device) for x in dd]
outputs = model(dd[0], dd[1]).cpu().detach().numpy()
p100k.append(outputs.astype("float16"))
p100k = np.vstack(p100k)
results = Parallel(n_jobs=n_jobs)(
delayed(process_chunk)(
disease_chunk_idx, diseases_chunk, d100k, p100k[:, :, diseases_chunk], pred_idx_precompute, age_groups, offset, n_bootstrap
)
for disease_chunk_idx, diseases_chunk in enumerate(diseases_chunks)
)
all_aucs = [item for sublist in results for item in sublist]
df_auc_unpooled = pd.DataFrame(all_aucs)
for key, value in meta_info.items():
df_auc_unpooled[key] = value
delphi_labels_subset = delphi_labels[['index', 'ICD-10 Chapter (short)', 'name', 'color', 'count']]
df_auc_unpooled_merged = df_auc_unpooled.merge(delphi_labels_subset, left_on="token", right_on="index", how="inner")
def aggregate_age_brackets_delong(group):
# For normal distributions, when averaging n of them:
# The variance of the sum is the sum of variances
# The variance of the average is the sum of variances divided by n^2
n = len(group)
mean = group['auc_delong'].mean()
# Since we're taking the average, divide combined variance by n^2
var = group['auc_variance_delong'].sum() / (n**2)
return pd.Series({
'auc': mean,
'auc_variance_delong': var,
'n_samples': n,
'n_diseased': group['n_diseased'].sum(),
'n_healthy': group['n_healthy'].sum(),
})
print('Using DeLong method to calculate AUC confidence intervals..')
df_auc = df_auc_unpooled.groupby(["token"]).apply(aggregate_age_brackets_delong).reset_index()
df_auc_merged = df_auc.merge(delphi_labels, left_on="token", right_on="index", how="inner")
if output_path is not None:
Path(output_path).mkdir(exist_ok=True, parents=True)
df_auc_merged.to_parquet(f"{output_path}/df_both.parquet", index=False)
df_auc_unpooled_merged.to_parquet(f"{output_path}/df_auc_unpooled.parquet", index=False)
return df_auc_unpooled_merged, df_auc_merged
def main():
parser = argparse.ArgumentParser(description="Evaluate AUC")
parser.add_argument("--dataset_subset_size", type=int, default=-1, help="Dataset subset size for evaluation")
parser.add_argument("--n_bootstrap", type=int, default=1, help="Number of bootstrap samples")
# Optional filtering/chunking parameters:
parser.add_argument("--filter_min_total", type=int, default=100, help="Minimum total count to filter tokens")
parser.add_argument("--disease_chunk_size", type=int, default=200, help="Chunk size for processing diseases")
parser.add_argument("--n_jobs", type=int, default=-1, help="Number of parallel jobs to run")
args = parser.parse_args()
output_path = './'
dataset_subset_size = args.dataset_subset_size
# Create output folder if it doesn't exist.
Path(output_path).mkdir(exist_ok=True, parents=True)
device = "cuda"
seed = 1337
# Load model checkpoint and initialize model.
model = load_model('config_n_embd_256_n_layer_16_n_head_16.json',
'best_model_n_embd_256_n_layer_16_n_head_16.pt',
1270)
model.eval()
model = model.to(device)
# Load training and validation data.
val_data_path = 'ukb_real_val.bin'
val_data_arr = np.memmap(val_data_path, dtype=np.uint32, mode='r').reshape(-1, 3)
block_length = 128
val_dataset = PatientEventDataset(val_data_arr, block_length)
if dataset_subset_size == -1:
dataset_subset_size = len(val_dataset)
# Get a subset batch for evaluation.
d100k = get_batch(val_dataset, slice(dataset_subset_size))
# Load labels (external) to be passed in.
delphi_labels = pd.read_csv("delphi_labels_chapters_colours_icd.csv")
# Call the internal evaluation function.
df_auc_unpooled, df_auc_merged = evaluate_auc_pipeline(
model,
d100k,
output_path,
delphi_labels,
diseases_of_interest=None,
filter_min_total=args.filter_min_total,
disease_chunk_size=args.disease_chunk_size,
device=device,
seed=seed,
n_bootstrap=args.n_bootstrap,
n_jobs=args.n_jobs,
)
if __name__ == "__main__":
main()