Files
DeepHealth/models.py
Jiarui Li 589d4d0bd2 feat: Implement time-aware GPT-2 for patient event prediction
This commit introduces a complete framework for training a temporal GPT-2 model on sequential patient event data.

Key components include:

- `models.py`:
  - `TimeAwareGPT2`: A custom GPT-2 model that incorporates temporal information through a time-based causal attention mask and a sinusoidal age encoding for positional information.
  - `AgeSinusoidalEncoding`: A module for creating time-based positional embeddings.
  - `CombinedLoss`: A two-part loss function combining cross-entropy for event prediction and a survival loss for event timing.

- `utils.py`:
  - `PatientEventDataset`: A PyTorch Dataset class to process, batch, and load patient event sequences, including imputation of "no event" gaps and padding/truncation.

- `train.py`:
  - A comprehensive training script that initializes the model, data loaders, and loss function.
  - Implements a training loop with a cosine annealing learning rate scheduler, validation, and early stopping based on validation loss.

- `prepare_data.py`:
  - Script for preprocessing raw UK Biobank data into a format suitable for the model.

- `GEMINI.md`:
  - Project documentation outlining the structure, coding style, and framework.
2025-10-16 14:21:36 +08:00

285 lines
11 KiB
Python

import torch
import torch.nn as nn
from torch.nn import functional as F
from typing import Tuple
import math
class CausalSelfAttention(nn.Module):
"""
A vanilla multi-head masked self-attention layer with a projection at the end.
"""
def __init__(self, n_embd: int, n_head: int, pdrop: float):
super().__init__()
assert n_embd % n_head == 0
# key, query, value projections for all heads
self.c_attn = nn.Linear(n_embd, 3 * n_embd)
# output projection
self.c_proj = nn.Linear(n_embd, n_embd)
# regularization
self.attn_dropout = nn.Dropout(pdrop)
self.resid_dropout = nn.Dropout(pdrop)
self.n_head = n_head
self.n_embd = n_embd
def forward(self, x: torch.Tensor, custom_mask: torch.Tensor) -> torch.Tensor:
B, L, D = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
k = k.view(B, L, self.n_head, D // self.n_head).transpose(1, 2) # (B, nh, L, hs)
q = q.view(B, L, self.n_head, D // self.n_head).transpose(1, 2) # (B, nh, L, hs)
v = v.view(B, L, self.n_head, D // self.n_head).transpose(1, 2) # (B, nh, L, hs)
# causal self-attention; Self-attend: (B, nh, L, hs) x (B, nh, hs, L) -> (B, nh, L, L)
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
# Apply the time-based causal mask
att = att.masked_fill(custom_mask.unsqueeze(1) == 0, float('-inf'))
att = F.softmax(att, dim=-1)
att = self.attn_dropout(att)
y = att @ v # (B, nh, L, L) x (B, nh, L, hs) -> (B, nh, L, hs)
y = y.transpose(1, 2).contiguous().view(B, L, D) # re-assemble all head outputs side by side
# output projection
y = self.resid_dropout(self.c_proj(y))
return y
class Block(nn.Module):
""" an unassuming Transformer block """
def __init__(self, n_embd: int, n_head: int, pdrop: float):
super().__init__()
self.ln_1 = nn.LayerNorm(n_embd)
self.attn = CausalSelfAttention(n_embd, n_head, pdrop)
self.ln_2 = nn.LayerNorm(n_embd)
self.mlp = nn.ModuleDict(dict(
c_fc = nn.Linear(n_embd, 4 * n_embd),
c_proj = nn.Linear(4 * n_embd, n_embd),
act = nn.GELU(),
dropout = nn.Dropout(pdrop),
))
m = self.mlp
self.mlpf = lambda x: m.dropout(m.c_proj(m.act(m.c_fc(x)))) # MLP forward
def forward(self, x: torch.Tensor, custom_mask: torch.Tensor) -> torch.Tensor:
x = x + self.attn(self.ln_1(x), custom_mask=custom_mask)
x = x + self.mlpf(self.ln_2(x))
return x
class AgeSinusoidalEncoding(nn.Module):
"""
Encodes age using sinusoidal functions, similar to positional encodings
in Transformers. This module creates a fixed-size embedding for an age
value given in days.
"""
def __init__(self, embedding_dim: int):
"""
Initializes the AgeSinusoidalEncoding module.
Args:
embedding_dim (int): The dimensionality of the output embedding.
Must be an even number.
Raises:
ValueError: If embedding_dim is not an even number.
"""
super().__init__()
if embedding_dim % 2 != 0:
raise ValueError(f"Embedding dimension must be an even number, but got {embedding_dim}")
self.embedding_dim = embedding_dim
# Pre-calculate the divisor term for the sinusoidal formula.
# The formula for the divisor is 10000^(2i/D), where D is the
# embedding_dim and i is the index for each pair of dimensions.
# i ranges from 0 to D/2 - 1.
i = torch.arange(0, self.embedding_dim, 2, dtype=torch.float32)
divisor = torch.pow(10000, i / self.embedding_dim)
# Register the divisor as a non-trainable buffer. This ensures it is
# moved to the correct device (e.g., GPU) along with the model.
self.register_buffer('divisor', divisor)
def forward(self, t: torch.Tensor) -> torch.Tensor:
"""
Forward pass for the AgeSinusoidalEncoding.
Args:
t (torch.Tensor): A tensor of shape (batch_size, sequence_length)
with dtype=torch.float32, representing age in days.
Returns:
torch.Tensor: The encoded age tensor of shape
(batch_size, sequence_length, embedding_dim).
"""
# 1. Unit Conversion: Convert age from days to years.
# We use 365.25 to account for leap years.
t_years = t / 365.25
# 2. Argument Calculation: Calculate the arguments for the sin/cos functions.
# The shapes are broadcast to (B, L, D/2).
# Input t_years: (B, L) -> unsqueezed to (B, L, 1)
# Divisor: (D/2) -> viewed as (1, 1, D/2)
args = t_years.unsqueeze(-1) * self.divisor.view(1, 1, -1)
# 3. Sinusoidal Application: Create the final output tensor.
# Initialize an empty tensor to store the embeddings.
output = torch.zeros(t.shape[0], t.shape[1], self.embedding_dim, device=t.device)
# Assign cosine of the arguments to the even indices.
output[:, :, 0::2] = torch.cos(args)
# Assign sine of the arguments to the odd indices.
output[:, :, 1::2] = torch.sin(args)
return output
class TimeAwareGPT2(nn.Module):
"""
A time-aware GPT-2 model with custom temporal features.
"""
def __init__(self, vocab_size: int, n_embd: int, n_layer: int, n_head: int, pdrop: float, token_pdrop: float):
super().__init__()
self.token_pdrop = token_pdrop
# Token and positional embeddings
self.wte = nn.Embedding(vocab_size, n_embd)
self.age_encoder = AgeSinusoidalEncoding(n_embd)
self.drop = nn.Dropout(pdrop)
# Transformer blocks
self.blocks = nn.ModuleList([Block(n_embd, n_head, pdrop) for _ in range(n_layer)])
# Final layer norm and linear head
self.ln_f = nn.LayerNorm(n_embd)
self.head = nn.Linear(n_embd, vocab_size, bias=False)
self.n_embd = n_embd
def forward(self, event_seq: torch.Tensor, time_seq: torch.Tensor) -> torch.Tensor:
"""
Forward pass for the TimeAwareGPT2 model.
Args:
event_seq (torch.Tensor): Token indices of shape (B, L).
time_seq (torch.Tensor): Timestamps for each event of shape (B, L).
Returns:
torch.Tensor: Logits of shape (B, L, vocab_size).
"""
B, L = event_seq.size()
# 1. Get token embeddings
token_embeddings = self.wte(event_seq)
# 2. Apply token dropout (only during training)
if self.training and self.token_pdrop > 0:
# Create a mask to randomly zero out entire token embedding vectors
drop_mask = torch.rand(token_embeddings.shape[:2], device=token_embeddings.device) < self.token_pdrop
token_embeddings[drop_mask] = 0.0
# 3. Get positional embeddings from time sequence
pos_embeddings = self.age_encoder(time_seq.float())
# 4. Combine embeddings and apply dropout
x = self.drop(token_embeddings + pos_embeddings)
# 5. Generate attention mask
# The attention mask combines two conditions:
# a) Time-based causality: A token i can attend to a token j only if time_seq[j] < time_seq[i].
# b) Padding mask: Do not attend to positions where the event token is 0.
# a) Time-based causal mask
t_i = time_seq.unsqueeze(-1) # (B, L, 1)
t_j = time_seq.unsqueeze(1) # (B, 1, L)
time_mask = (t_j < t_i)
# b) Padding mask (prevents attending to key positions that are padding)
padding_mask = (event_seq != 0).unsqueeze(1) # Shape: (B, 1, L)
# Combine the masks. A position (j) can be attended to by a query (i) only if
# it's in the past (time_mask) AND it's not a padding token (padding_mask).
combined_mask = time_mask & padding_mask
# 6. Pass through transformer blocks
for block in self.blocks:
x = block(x, custom_mask=combined_mask)
# 7. Final layer norm and projection to vocab size
x = self.ln_f(x)
logits = self.head(x)
return logits
def get_num_params(self) -> float:
"""
Returns the number of trainable parameters in the model in millions.
"""
return sum(p.numel() for p in self.parameters() if p.requires_grad) / 1e6
class CombinedLoss(nn.Module):
"""
Computes a two-part loss: a standard cross-entropy loss for event type
prediction and a survival analysis loss for event timing.
"""
def __init__(self, ignored_token_ids: list[int]):
"""
Initializes the CombinedLoss module.
Args:
ignored_token_ids (list[int]): A list of event type IDs to be
excluded from all loss calculations.
"""
super().__init__()
self.ignored_token_ids = ignored_token_ids
def forward(self, logits: torch.Tensor, x: torch.Tensor, t: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Calculates the combined cross-entropy and survival loss.
Args:
logits (torch.Tensor): Raw model outputs of shape (B, L, N).
x (torch.Tensor): Ground-truth event labels of shape (B, L).
t (torch.Tensor): True time duration for each event, shape (B, L).
Returns:
A tuple containing the two scalar loss tensors: (loss_ce, loss_survival).
"""
# 1. Create a mask to filter out ignored token IDs from loss calculation.
# An element is True if the corresponding label in x is NOT in the ignored list.
mask = torch.ones_like(x, dtype=torch.bool)
for token_id in self.ignored_token_ids:
mask = mask & (x != token_id)
# If the mask is all False (all tokens are ignored), return zero for both losses.
if not mask.any():
return torch.tensor(0.0, device=logits.device), torch.tensor(0.0, device=logits.device)
# 2. Part 1: Cross-Entropy Loss (loss_ce)
# Permute logits from (B, L, N) to (B, N, L) for F.cross_entropy.
logits_for_ce = logits.permute(0, 2, 1)
# Calculate per-element loss without reduction.
per_element_ce = F.cross_entropy(logits_for_ce, x, reduction='none')
# Apply the mask and compute the mean of valid elements.
loss_ce = per_element_ce[mask].mean()
# 3. Part 2: Survival Loss (loss_survival)
# Calculate event intensity (lambda) as the sum of exponentiated logits.
intensity = torch.sum(torch.exp(logits), dim=2)
# Calculate per-element survival loss (negative log-likelihood of exponential dist).
# We add a small epsilon for numerical stability with the log.
per_element_survival = -(torch.log(intensity + 1e-8) - intensity * t)
# Apply the mask and compute the mean of valid elements.
loss_survival = per_element_survival[mask].mean()
return loss_ce, loss_survival