import torch import torch.nn as nn from torch.nn import functional as F from typing import Tuple import math class CausalSelfAttention(nn.Module): """ A vanilla multi-head masked self-attention layer with a projection at the end. """ def __init__(self, n_embd: int, n_head: int, pdrop: float): super().__init__() assert n_embd % n_head == 0 # key, query, value projections for all heads self.c_attn = nn.Linear(n_embd, 3 * n_embd) # output projection self.c_proj = nn.Linear(n_embd, n_embd) # regularization self.attn_dropout = nn.Dropout(pdrop) self.resid_dropout = nn.Dropout(pdrop) self.n_head = n_head self.n_embd = n_embd def forward(self, x: torch.Tensor, custom_mask: torch.Tensor) -> torch.Tensor: B, L, D = x.size() # batch size, sequence length, embedding dimensionality (n_embd) # calculate query, key, values for all heads in batch and move head forward to be the batch dim q, k, v = self.c_attn(x).split(self.n_embd, dim=2) k = k.view(B, L, self.n_head, D // self.n_head).transpose(1, 2) # (B, nh, L, hs) q = q.view(B, L, self.n_head, D // self.n_head).transpose(1, 2) # (B, nh, L, hs) v = v.view(B, L, self.n_head, D // self.n_head).transpose(1, 2) # (B, nh, L, hs) # causal self-attention; Self-attend: (B, nh, L, hs) x (B, nh, hs, L) -> (B, nh, L, L) att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) # Apply the time-based causal mask att = att.masked_fill(custom_mask.unsqueeze(1) == 0, float('-inf')) att = F.softmax(att, dim=-1) att = self.attn_dropout(att) y = att @ v # (B, nh, L, L) x (B, nh, L, hs) -> (B, nh, L, hs) y = y.transpose(1, 2).contiguous().view(B, L, D) # re-assemble all head outputs side by side # output projection y = self.resid_dropout(self.c_proj(y)) return y class Block(nn.Module): """ an unassuming Transformer block """ def __init__(self, n_embd: int, n_head: int, pdrop: float): super().__init__() self.ln_1 = nn.LayerNorm(n_embd) self.attn = CausalSelfAttention(n_embd, n_head, pdrop) self.ln_2 = nn.LayerNorm(n_embd) self.mlp = nn.ModuleDict(dict( c_fc = nn.Linear(n_embd, 4 * n_embd), c_proj = nn.Linear(4 * n_embd, n_embd), act = nn.GELU(), dropout = nn.Dropout(pdrop), )) m = self.mlp self.mlpf = lambda x: m.dropout(m.c_proj(m.act(m.c_fc(x)))) # MLP forward def forward(self, x: torch.Tensor, custom_mask: torch.Tensor) -> torch.Tensor: x = x + self.attn(self.ln_1(x), custom_mask=custom_mask) x = x + self.mlpf(self.ln_2(x)) return x class AgeSinusoidalEncoding(nn.Module): """ Encodes age using sinusoidal functions, similar to positional encodings in Transformers. This module creates a fixed-size embedding for an age value given in days. """ def __init__(self, embedding_dim: int): """ Initializes the AgeSinusoidalEncoding module. Args: embedding_dim (int): The dimensionality of the output embedding. Must be an even number. Raises: ValueError: If embedding_dim is not an even number. """ super().__init__() if embedding_dim % 2 != 0: raise ValueError(f"Embedding dimension must be an even number, but got {embedding_dim}") self.embedding_dim = embedding_dim # Pre-calculate the divisor term for the sinusoidal formula. # The formula for the divisor is 10000^(2i/D), where D is the # embedding_dim and i is the index for each pair of dimensions. # i ranges from 0 to D/2 - 1. i = torch.arange(0, self.embedding_dim, 2, dtype=torch.float32) divisor = torch.pow(10000, i / self.embedding_dim) # Register the divisor as a non-trainable buffer. This ensures it is # moved to the correct device (e.g., GPU) along with the model. self.register_buffer('divisor', divisor) def forward(self, t: torch.Tensor) -> torch.Tensor: """ Forward pass for the AgeSinusoidalEncoding. Args: t (torch.Tensor): A tensor of shape (batch_size, sequence_length) with dtype=torch.float32, representing age in days. Returns: torch.Tensor: The encoded age tensor of shape (batch_size, sequence_length, embedding_dim). """ # 1. Unit Conversion: Convert age from days to years. # We use 365.25 to account for leap years. t_years = t / 365.25 # 2. Argument Calculation: Calculate the arguments for the sin/cos functions. # The shapes are broadcast to (B, L, D/2). # Input t_years: (B, L) -> unsqueezed to (B, L, 1) # Divisor: (D/2) -> viewed as (1, 1, D/2) args = t_years.unsqueeze(-1) * self.divisor.view(1, 1, -1) # 3. Sinusoidal Application: Create the final output tensor. # Initialize an empty tensor to store the embeddings. output = torch.zeros(t.shape[0], t.shape[1], self.embedding_dim, device=t.device) # Assign cosine of the arguments to the even indices. output[:, :, 0::2] = torch.cos(args) # Assign sine of the arguments to the odd indices. output[:, :, 1::2] = torch.sin(args) return output class TimeAwareGPT2(nn.Module): """ A time-aware GPT-2 model with custom temporal features. """ def __init__(self, vocab_size: int, n_embd: int, n_layer: int, n_head: int, pdrop: float, token_pdrop: float): super().__init__() self.token_pdrop = token_pdrop # Token and positional embeddings self.wte = nn.Embedding(vocab_size, n_embd) self.age_encoder = AgeSinusoidalEncoding(n_embd) self.drop = nn.Dropout(pdrop) # Transformer blocks self.blocks = nn.ModuleList([Block(n_embd, n_head, pdrop) for _ in range(n_layer)]) # Final layer norm and linear head self.ln_f = nn.LayerNorm(n_embd) self.head = nn.Linear(n_embd, vocab_size, bias=False) self.n_embd = n_embd def forward(self, event_seq: torch.Tensor, time_seq: torch.Tensor) -> torch.Tensor: """ Forward pass for the TimeAwareGPT2 model. Args: event_seq (torch.Tensor): Token indices of shape (B, L). time_seq (torch.Tensor): Timestamps for each event of shape (B, L). Returns: torch.Tensor: Logits of shape (B, L, vocab_size). """ B, L = event_seq.size() # 1. Get token embeddings token_embeddings = self.wte(event_seq) # 2. Apply token dropout (only during training) if self.training and self.token_pdrop > 0: # Create a mask to randomly zero out entire token embedding vectors drop_mask = torch.rand(token_embeddings.shape[:2], device=token_embeddings.device) < self.token_pdrop token_embeddings[drop_mask] = 0.0 # 3. Get positional embeddings from time sequence pos_embeddings = self.age_encoder(time_seq.float()) # 4. Combine embeddings and apply dropout x = self.drop(token_embeddings + pos_embeddings) # 5. Generate attention mask # The attention mask combines two conditions: # a) Time-based causality: A token i can attend to a token j only if time_seq[j] < time_seq[i]. # b) Padding mask: Do not attend to positions where the event token is 0. # a) Time-based causal mask t_i = time_seq.unsqueeze(-1) # (B, L, 1) t_j = time_seq.unsqueeze(1) # (B, 1, L) time_mask = (t_j < t_i) # b) Padding mask (prevents attending to key positions that are padding) padding_mask = (event_seq != 0).unsqueeze(1) # Shape: (B, 1, L) # Combine the masks. A position (j) can be attended to by a query (i) only if # it's in the past (time_mask) AND it's not a padding token (padding_mask). combined_mask = time_mask & padding_mask # 6. Pass through transformer blocks for block in self.blocks: x = block(x, custom_mask=combined_mask) # 7. Final layer norm and projection to vocab size x = self.ln_f(x) logits = self.head(x) return logits def get_num_params(self) -> float: """ Returns the number of trainable parameters in the model in millions. """ return sum(p.numel() for p in self.parameters() if p.requires_grad) / 1e6 class CombinedLoss(nn.Module): """ Computes a two-part loss: a standard cross-entropy loss for event type prediction and a survival analysis loss for event timing. """ def __init__(self, ignored_token_ids: list[int]): """ Initializes the CombinedLoss module. Args: ignored_token_ids (list[int]): A list of event type IDs to be excluded from all loss calculations. """ super().__init__() self.ignored_token_ids = ignored_token_ids def forward(self, logits: torch.Tensor, x: torch.Tensor, t: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: """ Calculates the combined cross-entropy and survival loss. Args: logits (torch.Tensor): Raw model outputs of shape (B, L, N). x (torch.Tensor): Ground-truth event labels of shape (B, L). t (torch.Tensor): True time duration for each event, shape (B, L). Returns: A tuple containing the two scalar loss tensors: (loss_ce, loss_survival). """ # 1. Create a mask to filter out ignored token IDs from loss calculation. # An element is True if the corresponding label in x is NOT in the ignored list. mask = torch.ones_like(x, dtype=torch.bool) for token_id in self.ignored_token_ids: mask = mask & (x != token_id) # If the mask is all False (all tokens are ignored), return zero for both losses. if not mask.any(): return torch.tensor(0.0, device=logits.device), torch.tensor(0.0, device=logits.device) # 2. Part 1: Cross-Entropy Loss (loss_ce) # Permute logits from (B, L, N) to (B, N, L) for F.cross_entropy. logits_for_ce = logits.permute(0, 2, 1) # Calculate per-element loss without reduction. per_element_ce = F.cross_entropy(logits_for_ce, x, reduction='none') # Apply the mask and compute the mean of valid elements. loss_ce = per_element_ce[mask].mean() # 3. Part 2: Survival Loss (loss_survival) # Calculate event intensity (lambda) as the sum of exponentiated logits. intensity = torch.sum(torch.exp(logits), dim=2) # Calculate per-element survival loss (negative log-likelihood of exponential dist). # We add a small epsilon for numerical stability with the log. per_element_survival = -(torch.log(intensity + 1e-8) - intensity * t) # Apply the mask and compute the mean of valid elements. loss_survival = per_element_survival[mask].mean() return loss_ce, loss_survival