import torch import torch.nn as nn from torch.optim import Adam from torch.utils.data import DataLoader import numpy as np import math import tqdm from models import TimeAwareGPT2, CombinedLoss from utils import PatientEventDataset # --- Configuration --- class TrainConfig: # Data parameters train_data_path = 'ukb_real_train.bin' val_data_path = 'ukb_real_val.bin' block_length = 256 # Sequence length # Model parameters n_embd = 256 n_layer = 8 n_head = 8 pdrop = 0.1 token_pdrop = 0.1 # Training parameters max_epoch = 200 batch_size = 128 lr_initial = 6e-4 lr_final = 6e-5 warmup_epochs = 10 early_stopping_patience = 5 # Loss parameters # 0 = padding, 1 = "no event" ignored_token_ids = [0, 1] # System parameters device = 'cuda' if torch.cuda.is_available() else 'cpu' # --- Main Training Script --- def main(): config = TrainConfig() # --- 1. Data Loading --- print(f"Loading data from {config.train_data_path} and {config.val_data_path}...") train_data_arr = np.memmap(config.train_data_path, dtype=np.uint32, mode='r').reshape(-1, 3) val_data_arr = np.memmap(config.val_data_path, dtype=np.uint32, mode='r').reshape(-1, 3) # Infer vocab_size from the data (max label + 1) vocab_size = int(max(train_data_arr[:, 2].max(), val_data_arr[:, 2].max())) + 1 print(f"Inferred vocabulary size: {vocab_size}") train_dataset = PatientEventDataset(train_data_arr, config.block_length) val_dataset = PatientEventDataset(val_data_arr, config.block_length) train_loader = DataLoader(train_dataset, batch_size=config.batch_size, shuffle=True, num_workers=4, pin_memory=True) val_loader = DataLoader(val_dataset, batch_size=config.batch_size, shuffle=False, num_workers=4, pin_memory=True) # --- 2. Model, Optimizer, and Loss Initialization --- print(f"Initializing model on {config.device}...") model = TimeAwareGPT2( vocab_size=vocab_size, n_embd=config.n_embd, n_layer=config.n_layer, n_head=config.n_head, pdrop=config.pdrop, token_pdrop=config.token_pdrop ).to(config.device) print(f"Model initialized with {model.get_num_params():.2f}M trainable parameters.") loss_fn = CombinedLoss(config.ignored_token_ids) optimizer = Adam(model.parameters(), lr=config.lr_initial) # --- 3. Training Loop --- best_val_loss = float('inf') patience_counter = 0 print("Starting training...") for epoch in range(config.max_epoch): # --- Learning Rate Scheduling --- if epoch < config.warmup_epochs: lr = config.lr_initial else: progress = (epoch - config.warmup_epochs) / (config.max_epoch - config.warmup_epochs) lr = config.lr_final + 0.5 * (config.lr_initial - config.lr_final) * (1 + math.cos(math.pi * progress)) for param_group in optimizer.param_groups: param_group['lr'] = lr # --- Training Phase --- model.train() train_loss_ce_acc, train_loss_surv_acc = 0.0, 0.0 train_steps = 0 pbar = tqdm.tqdm(train_loader, desc=f"Epoch {epoch+1}/{config.max_epoch} [Train]") for event_seq, time_seq in pbar: event_seq, time_seq = event_seq.to(config.device), time_seq.to(config.device) # Prepare inputs and targets input_events = event_seq[:, :-1] input_times = time_seq[:, :-1] target_events = event_seq[:, 1:] target_wait_times = (time_seq[:, 1:] - time_seq[:, :-1]).float() # Forward pass logits = model(input_events, input_times) loss_ce, loss_survival = loss_fn(logits, target_events, target_wait_times) loss = loss_ce + loss_survival # Backward pass and optimization optimizer.zero_grad() loss.backward() optimizer.step() train_loss_ce_acc += loss_ce.item() train_loss_surv_acc += loss_survival.item() train_steps += 1 pbar.set_postfix({'loss_ce': f'{loss_ce.item():.4f}', 'loss_surv': f'{loss_survival.item():.4f}', 'lr': f'{lr:.2e}'}) avg_train_loss_ce = train_loss_ce_acc / train_steps avg_train_loss_surv = train_loss_surv_acc / train_steps # --- Validation Phase --- model.eval() val_loss_ce_acc, val_loss_surv_acc = 0.0, 0.0 val_steps = 0 with torch.no_grad(): pbar_val = tqdm.tqdm(val_loader, desc=f"Epoch {epoch+1}/{config.max_epoch} [Val]") for event_seq, time_seq in pbar_val: event_seq, time_seq = event_seq.to(config.device), time_seq.to(config.device) input_events = event_seq[:, :-1] input_times = time_seq[:, :-1] target_events = event_seq[:, 1:] target_wait_times = (time_seq[:, 1:] - time_seq[:, :-1]).float() logits = model(input_events, input_times) loss_ce, loss_survival = loss_fn(logits, target_events, target_wait_times) val_loss_ce_acc += loss_ce.item() val_loss_surv_acc += loss_survival.item() val_steps += 1 pbar_val.set_postfix({'loss_ce': f'{loss_ce.item():.4f}', 'loss_surv': f'{loss_survival.item():.4f}'}) avg_val_loss_ce = val_loss_ce_acc / val_steps avg_val_loss_surv = val_loss_surv_acc / val_steps total_val_loss = avg_val_loss_ce + avg_val_loss_surv print(f"Epoch {epoch+1} Summary: \n" f" Train Loss: {avg_train_loss_ce + avg_train_loss_surv:.4f} (CE: {avg_train_loss_ce:.4f}, Surv: {avg_train_loss_surv:.4f})\n" f" Val Loss: {total_val_loss:.4f} (CE: {avg_val_loss_ce:.4f}, Surv: {avg_val_loss_surv:.4f})\n" f" Learning Rate: {lr:.6f}") # --- Early Stopping Check --- if total_val_loss < best_val_loss: best_val_loss = total_val_loss patience_counter = 0 print(f"Validation loss improved to {best_val_loss:.4f}. Resetting patience.") else: patience_counter += 1 print(f"Validation loss did not improve. Patience: {patience_counter}/{config.early_stopping_patience}") if patience_counter >= config.early_stopping_patience: print("\nEarly stopping triggered due to no improvement in validation loss.") break if __name__ == '__main__': main()