Commit Graph

66 Commits

Author SHA1 Message Date
aff0fe480b Refactor model and training scripts: remove unused imports and add FactorizedHead class for improved modularity 2026-01-09 12:01:52 +08:00
c70c3cd71e Reorganize import statements for consistency and clarity in model and training scripts 2026-01-09 10:16:03 +08:00
d7600514af Update Trainer class to rename parameters for clarity in embedding configuration 2026-01-08 17:11:19 +08:00
d20d32ba22 Add multi-GPU experiment runner script and experiments configuration 2026-01-08 13:57:34 +08:00
01a96d37ea Enhance DataLoader configuration and improve tensor transfer efficiency in Trainer class 2026-01-08 13:20:32 +08:00
5382f9f159 Remove EMA model implementation from Trainer class and related parameters from TrainConfig 2026-01-08 13:14:29 +08:00
615e2fe748 Refactor PiecewiseExponentialLoss for clarity and numerical stability improvements 2026-01-08 13:05:53 +08:00
06a01d2893 Add PiecewiseExponentialLoss class and update TrainConfig for new loss type 2026-01-08 12:45:31 +08:00
7c36f7a007 Update age_encoder parameter choices in TrainConfig and argument parser for clarity 2026-01-08 11:38:45 +08:00
9eda00ea48 Add n_tech_tokens parameter to DelphiFork and SapDelphi model initializations 2026-01-08 11:36:23 +08:00
1d1f568a3f Rename age_encoder parameter to age_encoder_type for clarity in Trainer class 2026-01-08 11:34:44 +08:00
8293f7ee24 Enhance TabularEncoder with BatchNorm and AutoDiscretization for continuous features 2026-01-08 00:24:43 +08:00
33ba7e6c1d Refactor training logic to improve early stopping mechanism and variable naming 2026-01-08 00:07:15 +08:00
811b2e1a46 Implement training script for Delphi model with configurable parameters 2026-01-07 23:57:29 +08:00
6984b254b3 Add loss functions and model architecture for time-to-event prediction
- Implemented ExponentialNLLLoss and WeibullNLLLoss in losses.py for negative log-likelihood calculations.
- Developed TabularEncoder class in model.py for encoding tabular features.
- Created DelphiFork and SapDelphi classes in model.py for time-to-event prediction using transformer architecture.
- Added data preparation scripts in prepare_data.R and prepare_data.py for processing UK Biobank data, including handling field mappings and event data extraction.
2026-01-07 21:32:00 +08:00
5d1d79b908 Initial commit 2026-01-07 21:27:38 +08:00