add evaluation scripts.
This commit is contained in:
1271
delphi_labels_chapters_colours_icd.csv
Normal file
1271
delphi_labels_chapters_colours_icd.csv
Normal file
File diff suppressed because it is too large
Load Diff
501
evaluate_auc.py
Normal file
501
evaluate_auc.py
Normal file
@@ -0,0 +1,501 @@
|
||||
import scipy.stats
|
||||
import scipy
|
||||
import warnings
|
||||
import torch
|
||||
from model import DelphiConfig, Delphi
|
||||
from tqdm import tqdm
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import argparse
|
||||
from utils import get_batch, get_p2i
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
def auc(x1, x2):
|
||||
n1 = len(x1)
|
||||
n2 = len(x2)
|
||||
R1 = np.concatenate([x1, x2]).argsort().argsort()[:n1].sum() + n1
|
||||
U1 = n1 * n2 + 0.5 * n1 * (n1 + 1) - R1
|
||||
if n1 == 0 or n2 == 0:
|
||||
return np.nan
|
||||
return U1 / n1 / n2
|
||||
|
||||
|
||||
def get_common_diseases(delphi_labels, filter_min_total=100):
|
||||
chapters_of_interest = [
|
||||
"I. Infectious Diseases",
|
||||
"II. Neoplasms",
|
||||
"III. Blood & Immune Disorders",
|
||||
"IV. Metabolic Diseases",
|
||||
"V. Mental Disorders",
|
||||
"VI. Nervous System Diseases",
|
||||
"VII. Eye Diseases",
|
||||
"VIII. Ear Diseases",
|
||||
"IX. Circulatory Diseases",
|
||||
"X. Respiratory Diseases",
|
||||
"XI. Digestive Diseases",
|
||||
"XII. Skin Diseases",
|
||||
"XIII. Musculoskeletal Diseases",
|
||||
"XIV. Genitourinary Diseases",
|
||||
"XV. Pregnancy & Childbirth",
|
||||
"XVI. Perinatal Conditions",
|
||||
"XVII. Congenital Abnormalities",
|
||||
"Death",
|
||||
]
|
||||
labels_df = delphi_labels[
|
||||
delphi_labels["ICD-10 Chapter (short)"].isin(chapters_of_interest) * (delphi_labels["count"] > filter_min_total)
|
||||
]
|
||||
return labels_df["index"].tolist()
|
||||
|
||||
|
||||
def optimized_bootstrapped_auc_gpu(case, control, n_bootstrap=1000):
|
||||
"""
|
||||
Computes bootstrapped AUC estimates using PyTorch on CUDA.
|
||||
|
||||
Parameters:
|
||||
case: 1D tensor of scores for positive cases
|
||||
control: 1D tensor of scores for controls
|
||||
n_bootstrap: Number of bootstrap replicates
|
||||
|
||||
Returns:
|
||||
Tensor of shape (n_bootstrap,) containing AUC for each bootstrap replicate
|
||||
"""
|
||||
if not torch.cuda.is_available():
|
||||
raise RuntimeError("CUDA is not available. This function requires a GPU.")
|
||||
|
||||
# Convert inputs to CUDA tensors
|
||||
if not torch.is_tensor(case):
|
||||
case = torch.tensor(case, device="cuda", dtype=torch.float32)
|
||||
else:
|
||||
case = case.to("cuda", dtype=torch.float32)
|
||||
|
||||
if not torch.is_tensor(control):
|
||||
control = torch.tensor(control, device="cuda", dtype=torch.float32)
|
||||
else:
|
||||
control = control.to("cuda", dtype=torch.float32)
|
||||
|
||||
n_case = case.size(0)
|
||||
n_control = control.size(0)
|
||||
total = n_case + n_control
|
||||
|
||||
# Generate bootstrap samples
|
||||
boot_idx_case = torch.randint(0, n_case, (n_bootstrap, n_case), device="cuda")
|
||||
boot_idx_control = torch.randint(0, n_control, (n_bootstrap, n_control), device="cuda")
|
||||
|
||||
boot_case = case[boot_idx_case]
|
||||
boot_control = control[boot_idx_control]
|
||||
|
||||
combined = torch.cat([boot_case, boot_control], dim=1)
|
||||
|
||||
# Mask to identify case entries
|
||||
mask = torch.zeros((n_bootstrap, total), dtype=torch.bool, device="cuda")
|
||||
mask[:, :n_case] = True
|
||||
|
||||
# Compute ranks and AUC
|
||||
ranks = combined.argsort(dim=1).argsort(dim=1)
|
||||
case_ranks_sum = torch.sum(ranks.float() * mask.float(), dim=1)
|
||||
min_case_rank_sum = n_case * (n_case - 1) / 2.0
|
||||
U = case_ranks_sum - min_case_rank_sum
|
||||
aucs = U / (n_case * n_control)
|
||||
return aucs.cpu().tolist()
|
||||
|
||||
|
||||
# AUC comparison adapted from
|
||||
# https://github.com/Netflix/vmaf/
|
||||
def compute_midrank(x):
|
||||
"""Computes midranks.
|
||||
Args:
|
||||
x - a 1D numpy array
|
||||
Returns:
|
||||
array of midranks
|
||||
"""
|
||||
J = np.argsort(x)
|
||||
Z = x[J]
|
||||
N = len(x)
|
||||
T = np.zeros(N, dtype=np.float32)
|
||||
i = 0
|
||||
while i < N:
|
||||
j = i
|
||||
while j < N and Z[j] == Z[i]:
|
||||
j += 1
|
||||
T[i:j] = 0.5 * (i + j - 1)
|
||||
i = j
|
||||
T2 = np.empty(N, dtype=np.float32)
|
||||
# Note(kazeevn) +1 is due to Python using 0-based indexing
|
||||
# instead of 1-based in the AUC formula in the paper
|
||||
T2[J] = T + 1
|
||||
return T2
|
||||
|
||||
|
||||
def fastDeLong(predictions_sorted_transposed, label_1_count):
|
||||
"""
|
||||
The fast version of DeLong's method for computing the covariance of
|
||||
unadjusted AUC.
|
||||
Args:
|
||||
predictions_sorted_transposed: a 2D numpy.array[n_classifiers, n_examples]
|
||||
sorted such as the examples with label "1" are first
|
||||
Returns:
|
||||
(AUC value, DeLong covariance)
|
||||
Reference:
|
||||
@article{sun2014fast,
|
||||
title={Fast Implementation of DeLong's Algorithm for
|
||||
Comparing the Areas Under Correlated Receiver Operating Characteristic Curves},
|
||||
author={Xu Sun and Weichao Xu},
|
||||
journal={IEEE Signal Processing Letters},
|
||||
volume={21},
|
||||
number={11},
|
||||
pages={1389--1393},
|
||||
year={2014},
|
||||
publisher={IEEE}
|
||||
}
|
||||
"""
|
||||
# Short variables are named as they are in the paper
|
||||
m = label_1_count
|
||||
n = predictions_sorted_transposed.shape[1] - m
|
||||
positive_examples = predictions_sorted_transposed[:, :m]
|
||||
negative_examples = predictions_sorted_transposed[:, m:]
|
||||
k = predictions_sorted_transposed.shape[0]
|
||||
|
||||
tx = np.empty([k, m], dtype=np.float32)
|
||||
ty = np.empty([k, n], dtype=np.float32)
|
||||
tz = np.empty([k, m + n], dtype=np.float32)
|
||||
for r in range(k):
|
||||
tx[r, :] = compute_midrank(positive_examples[r, :])
|
||||
ty[r, :] = compute_midrank(negative_examples[r, :])
|
||||
tz[r, :] = compute_midrank(predictions_sorted_transposed[r, :])
|
||||
aucs = tz[:, :m].sum(axis=1) / m / n - float(m + 1.0) / 2.0 / n
|
||||
v01 = (tz[:, :m] - tx[:, :]) / n
|
||||
v10 = 1.0 - (tz[:, m:] - ty[:, :]) / m
|
||||
sx = np.cov(v01)
|
||||
sy = np.cov(v10)
|
||||
delongcov = sx / m + sy / n
|
||||
return aucs, delongcov
|
||||
|
||||
|
||||
def compute_ground_truth_statistics(ground_truth):
|
||||
assert np.array_equal(np.unique(ground_truth), [0, 1])
|
||||
order = (-ground_truth).argsort()
|
||||
label_1_count = int(ground_truth.sum())
|
||||
return order, label_1_count
|
||||
|
||||
|
||||
def get_auc_delong_var(healthy_scores, diseased_scores):
|
||||
"""
|
||||
Computes ROC AUC value and variance using DeLong's method
|
||||
|
||||
Args:
|
||||
healthy_scores: Values for class 0 (healthy/controls)
|
||||
diseased_scores: Values for class 1 (diseased/cases)
|
||||
Returns:
|
||||
AUC value and variance
|
||||
"""
|
||||
# Create ground truth labels (1 for diseased, 0 for healthy)
|
||||
ground_truth = np.array([1] * len(diseased_scores) + [0] * len(healthy_scores))
|
||||
predictions = np.concatenate([diseased_scores, healthy_scores])
|
||||
|
||||
# Compute statistics needed for DeLong method
|
||||
order, label_1_count = compute_ground_truth_statistics(ground_truth)
|
||||
predictions_sorted_transposed = predictions[np.newaxis, order]
|
||||
|
||||
# Calculate AUC and covariance
|
||||
aucs, delongcov = fastDeLong(predictions_sorted_transposed, label_1_count)
|
||||
assert len(aucs) == 1, "There is a bug in the code, please forward this to the developers"
|
||||
|
||||
return aucs[0], delongcov
|
||||
|
||||
|
||||
def get_calibration_auc(j, k, d, p, offset=365.25, age_groups=range(45, 80, 5), precomputed_idx=None, n_bootstrap=1, use_delong=False):
|
||||
age_step = age_groups[1] - age_groups[0]
|
||||
|
||||
# Indexes of cases with disease k
|
||||
wk = np.where(d[2] == k)
|
||||
|
||||
if len(wk[0]) < 2:
|
||||
return None
|
||||
|
||||
# For controls, we need to exclude cases with disease k
|
||||
wc = np.where((d[2] != k) * (~(d[2] == k).any(-1))[..., None])
|
||||
|
||||
wall = (np.concatenate([wk[0], wc[0]]), np.concatenate([wk[1], wc[1]])) # All cases and controls
|
||||
|
||||
# We need to take into account the offset t and use the tokens for prediction that are at least t before the event
|
||||
if precomputed_idx is None:
|
||||
pred_idx = (d[1][wall[0]] <= d[3][wall].reshape(-1, 1) - offset).sum(1) - 1
|
||||
else:
|
||||
pred_idx = precomputed_idx[wall] # It's actually much faster to precompute this
|
||||
|
||||
z = d[1][(wall[0], pred_idx)] # Times of the tokens for prediction
|
||||
z = z[pred_idx != -1]
|
||||
|
||||
zk = d[3][wall] # Target times
|
||||
zk = zk[pred_idx != -1]
|
||||
|
||||
# x = np.exp(p[..., j][(wall[0], pred_idx)]) * 365.25
|
||||
# x = 1 - np.exp(-x * age_step) # the function is monotinic, so we don't need to do this for the AUC
|
||||
x = p[..., j][(wall[0], pred_idx)]
|
||||
x = x[pred_idx != -1]
|
||||
|
||||
wk = (wk[0][pred_idx[: len(wk[0])] != -1], wk[1][pred_idx[: len(wk[0])] != -1])
|
||||
p_idx = wall[0][pred_idx != -1]
|
||||
|
||||
out = []
|
||||
|
||||
for i, aa in enumerate(age_groups):
|
||||
a = np.logical_and(z / 365.25 >= aa, z / 365.25 < aa + age_step)
|
||||
# Optionally, add extra filtering on the time difference, for example:
|
||||
# a *= (zk - z < 365.25)
|
||||
selected_groups = p_idx[a]
|
||||
perm = np.random.permutation(len(selected_groups))
|
||||
_, indices = np.unique(selected_groups[perm], return_index=True)
|
||||
indices = perm[indices]
|
||||
selected = np.zeros(np.sum(a), dtype=bool)
|
||||
selected[indices] = True
|
||||
a[a] = selected
|
||||
|
||||
control = x[len(wk[0]) :][a[len(wk[0]) :]]
|
||||
case = x[: len(wk[0])][a[: len(wk[0])]]
|
||||
|
||||
if len(control) == 0 or len(case) == 0:
|
||||
continue
|
||||
|
||||
if use_delong:
|
||||
auc_value_delong, auc_variance_delong = get_auc_delong_var(control, case)
|
||||
auc_delong_dict = {"auc_delong": auc_value_delong, "auc_variance_delong": auc_variance_delong}
|
||||
else:
|
||||
auc_delong_dict = {}
|
||||
|
||||
if n_bootstrap > 1:
|
||||
aucs_bootstrapped = optimized_bootstrapped_auc_gpu(case, control, n_bootstrap)
|
||||
|
||||
for bootstrap_idx in range(n_bootstrap):
|
||||
y = auc_value_delong if n_bootstrap == 1 else aucs_bootstrapped[bootstrap_idx]
|
||||
out_item = {
|
||||
"token": k,
|
||||
"auc": y,
|
||||
"age": aa,
|
||||
"n_healthy": len(control),
|
||||
"n_diseased": len(case),
|
||||
}
|
||||
out.append(out_item | auc_delong_dict)
|
||||
if n_bootstrap > 1:
|
||||
out_item["bootstrap_idx"] = bootstrap_idx
|
||||
return out
|
||||
|
||||
|
||||
# New internal function that performs the AUC evaluation pipeline.
|
||||
def evaluate_auc_pipeline(
|
||||
model,
|
||||
d100k,
|
||||
output_path,
|
||||
delphi_labels,
|
||||
diseases_of_interest=None,
|
||||
filter_min_total=100,
|
||||
disease_chunk_size=200,
|
||||
age_groups=np.arange(40, 80, 5),
|
||||
offset=0.1,
|
||||
batch_size=128,
|
||||
device="cpu",
|
||||
seed=1337,
|
||||
n_bootstrap=1,
|
||||
meta_info={},
|
||||
):
|
||||
"""
|
||||
Runs the AUC evaluation pipeline.
|
||||
|
||||
Args:
|
||||
model (torch.nn.Module): The loaded model set to eval().
|
||||
d100k (tuple): Data batch from get_batch.
|
||||
delphi_labels (pd.DataFrame): DataFrame with label info (token names, etc. "delphi_labels_chapters_colours_icd.csv").
|
||||
output_path (str | None): Directory where CSV files will be written. If None, files will not be saved.
|
||||
diseases_of_interest (np.ndarray or list, optional): If provided, these disease indices are used.
|
||||
filter_min_total (int): Minimum total token count to include a token.
|
||||
disease_chunk_size (int): Maximum chunk size for processing diseases.
|
||||
age_groups (np.ndarray): Age groups to use in calibration.
|
||||
offset (float): Offset used in get_calibration_auc.
|
||||
batch_size (int): Batch size for model forwarding.
|
||||
device (str): Device identifier.
|
||||
seed (int): Random seed for reproducibility.
|
||||
n_bootstrap (int): Number of bootstrap samples. (1 for no bootstrap)
|
||||
Returns:
|
||||
tuple: (df_auc_unpooled, df_auc, df_both) DataFrames.
|
||||
"""
|
||||
|
||||
assert n_bootstrap > 0, "n_bootstrap must be greater than 0"
|
||||
|
||||
# Set random seeds
|
||||
torch.manual_seed(seed)
|
||||
torch.cuda.manual_seed(seed)
|
||||
|
||||
# Get common diseases
|
||||
if diseases_of_interest is None:
|
||||
diseases_of_interest = get_common_diseases(delphi_labels, filter_min_total)
|
||||
|
||||
# Split diseases into chunks for processing
|
||||
num_chunks = (len(diseases_of_interest) + disease_chunk_size - 1) // disease_chunk_size
|
||||
diseases_chunks = np.array_split(diseases_of_interest, num_chunks)
|
||||
|
||||
# Precompute prediction indices for calibration
|
||||
pred_idx_precompute = (d100k[1][:, :, np.newaxis] < d100k[3][:, np.newaxis, :] - offset).sum(1) - 1
|
||||
|
||||
all_aucs = []
|
||||
tqdm_options = {"desc": "Processing disease chunks", "total": len(diseases_chunks)}
|
||||
for disease_chunk_idx, diseases_chunk in tqdm(enumerate(diseases_chunks), **tqdm_options):
|
||||
p100k = []
|
||||
model.to(device)
|
||||
with torch.no_grad():
|
||||
# Process the evaluation data in batches
|
||||
for dd in tqdm(
|
||||
zip(*[torch.split(x, batch_size) for x in d100k]),
|
||||
desc=f"Model inference, chunk {disease_chunk_idx}",
|
||||
total=d100k[0].shape[0] // batch_size + 1,
|
||||
):
|
||||
dd = [x.to(device) for x in dd]
|
||||
outputs = model(*dd)[0].cpu().detach().numpy()
|
||||
# Keep only the columns corresponding to the current disease chunk
|
||||
p100k.append(outputs[:, :, diseases_chunk].astype("float16")) # enough to store logits, but not rates
|
||||
p100k = np.vstack(p100k)
|
||||
|
||||
# Loop over each disease (token) in the current chunk, sexes separately
|
||||
for sex, sex_idx in [("female", 2), ("male", 3)]:
|
||||
sex_mask = ((d100k[0] == sex_idx).sum(1) > 0).cpu().detach().numpy()
|
||||
p_sex = p100k[sex_mask]
|
||||
d100k_sex = [d_[sex_mask].cpu().detach().numpy() for d_ in d100k]
|
||||
precomputed_idx_subset = pred_idx_precompute[sex_mask].cpu().detach().numpy()
|
||||
for j, k in tqdm(
|
||||
list(enumerate(diseases_chunk)), desc=f"Processing diseases in chunk {disease_chunk_idx}, {sex}"
|
||||
):
|
||||
# Get calibration AUC for the current disease token.
|
||||
out = get_calibration_auc(
|
||||
j,
|
||||
k,
|
||||
d100k_sex,
|
||||
p_sex,
|
||||
age_groups=age_groups,
|
||||
offset=offset,
|
||||
precomputed_idx=precomputed_idx_subset,
|
||||
n_bootstrap=n_bootstrap,
|
||||
use_delong=True,
|
||||
)
|
||||
if out is None:
|
||||
# print(f"No data for disease {k} and sex {sex}")
|
||||
continue
|
||||
for out_item in out:
|
||||
out_item["sex"] = sex
|
||||
all_aucs.append(out_item)
|
||||
|
||||
df_auc_unpooled = pd.DataFrame(all_aucs)
|
||||
|
||||
for key, value in meta_info.items():
|
||||
df_auc_unpooled[key] = value
|
||||
|
||||
delphi_labels_subset = delphi_labels[['index', 'ICD-10 Chapter (short)', 'name', 'color', 'count']]
|
||||
df_auc_unpooled_merged = df_auc_unpooled.merge(delphi_labels_subset, left_on="token", right_on="index", how="inner")
|
||||
|
||||
def aggregate_age_brackets_delong(group):
|
||||
# For normal distributions, when averaging n of them:
|
||||
# The variance of the sum is the sum of variances
|
||||
# The variance of the average is the sum of variances divided by n^2
|
||||
n = len(group)
|
||||
mean = group['auc_delong'].mean()
|
||||
# Since we're taking the average, divide combined variance by n^2
|
||||
var = group['auc_variance_delong'].sum() / (n**2)
|
||||
return pd.Series({
|
||||
'auc': mean,
|
||||
'auc_variance_delong': var,
|
||||
'n_samples': n,
|
||||
'n_diseased': group['n_diseased'].sum(),
|
||||
'n_healthy': group['n_healthy'].sum(),
|
||||
})
|
||||
|
||||
print('Using DeLong method to calculate AUC confidence intervals..')
|
||||
|
||||
df_auc = df_auc_unpooled.groupby(["token"]).apply(aggregate_age_brackets_delong).reset_index()
|
||||
df_auc_merged = df_auc.merge(delphi_labels, left_on="token", right_on="index", how="inner")
|
||||
|
||||
if output_path is not None:
|
||||
Path(output_path).mkdir(exist_ok=True, parents=True)
|
||||
df_auc_merged.to_parquet(f"{output_path}/df_both.parquet", index=False)
|
||||
df_auc_unpooled_merged.to_parquet(f"{output_path}/df_auc_unpooled.parquet", index=False)
|
||||
|
||||
return df_auc_unpooled_merged, df_auc_merged
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(description="Evaluate AUC")
|
||||
parser.add_argument("--input_path", type=str, help="Path to the dataset")
|
||||
parser.add_argument("--output_path", type=str, help="Path to the output")
|
||||
parser.add_argument("--model_ckpt_path", type=str, help="Path to the model weights")
|
||||
parser.add_argument("--no_event_token_rate", type=int, help="No event token rate")
|
||||
parser.add_argument(
|
||||
"--health_token_replacement_prob", default=0.0, type=float, help="Health token replacement probability"
|
||||
)
|
||||
parser.add_argument("--dataset_subset_size", type=int, default=-1, help="Dataset subset size for evaluation")
|
||||
parser.add_argument("--n_bootstrap", type=int, default=1, help="Number of bootstrap samples")
|
||||
# Optional filtering/chunking parameters:
|
||||
parser.add_argument("--filter_min_total", type=int, default=100, help="Minimum total count to filter tokens")
|
||||
parser.add_argument("--disease_chunk_size", type=int, default=200, help="Chunk size for processing diseases")
|
||||
args = parser.parse_args()
|
||||
|
||||
input_path = args.input_path
|
||||
output_path = args.output_path
|
||||
no_event_token_rate = args.no_event_token_rate
|
||||
health_token_replacement_prob = args.health_token_replacement_prob
|
||||
dataset_subset_size = args.dataset_subset_size
|
||||
|
||||
# Create output folder if it doesn't exist.
|
||||
Path(output_path).mkdir(exist_ok=True, parents=True)
|
||||
|
||||
device = "cuda"
|
||||
seed = 1337
|
||||
|
||||
# Load model checkpoint and initialize model.
|
||||
ckpt_path = args.model_ckpt_path
|
||||
checkpoint = torch.load(ckpt_path, map_location=device)
|
||||
conf = DelphiConfig(**checkpoint["model_args"])
|
||||
model = Delphi(conf)
|
||||
state_dict = checkpoint["model"]
|
||||
model.load_state_dict(state_dict)
|
||||
model.eval()
|
||||
model = model.to(device)
|
||||
|
||||
# Load training and validation data.
|
||||
val = np.fromfile(f"{input_path}/val.bin", dtype=np.uint32).reshape(-1, 3).astype(np.int64)
|
||||
|
||||
val_p2i = get_p2i(val)
|
||||
|
||||
if dataset_subset_size == -1:
|
||||
dataset_subset_size = len(val_p2i)
|
||||
|
||||
# Get a subset batch for evaluation.
|
||||
d100k = get_batch(
|
||||
range(dataset_subset_size),
|
||||
val,
|
||||
val_p2i,
|
||||
select="left",
|
||||
block_size=80,
|
||||
device=device,
|
||||
padding="random",
|
||||
no_event_token_rate=no_event_token_rate,
|
||||
health_token_replacement_prob=health_token_replacement_prob,
|
||||
)
|
||||
|
||||
# Load labels (external) to be passed in.
|
||||
delphi_labels = pd.read_csv("delphi_labels_chapters_colours_icd.csv")
|
||||
|
||||
# Call the internal evaluation function.
|
||||
df_auc_unpooled, df_auc_merged = evaluate_auc_pipeline(
|
||||
model,
|
||||
d100k,
|
||||
output_path,
|
||||
delphi_labels,
|
||||
diseases_of_interest=None,
|
||||
filter_min_total=args.filter_min_total,
|
||||
disease_chunk_size=args.disease_chunk_size,
|
||||
device=device,
|
||||
seed=seed,
|
||||
n_bootstrap=args.n_bootstrap,
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
1118
evaluate_delphi.py
Normal file
1118
evaluate_delphi.py
Normal file
File diff suppressed because it is too large
Load Diff
629
shap_analysis.py
Normal file
629
shap_analysis.py
Normal file
@@ -0,0 +1,629 @@
|
||||
#!/usr/bin/env python
|
||||
# coding: utf-8
|
||||
|
||||
# # Looking inside Delphi with SHAP values
|
||||
#
|
||||
# Welcome to the Delphi SHAP notebook!
|
||||
#
|
||||
# Delphi is a generative autoregressive model that not only predicts the future disease rates, but also sample entire disease trajectories one step at a time.
|
||||
#
|
||||
# In this notebook, we will use SHAP (SHapley Additive exPlanations) framework to analyse which interaction between diseases that Delphi learned from data and how these interaction influence its predicitons.
|
||||
#
|
||||
# Let's start by looking at what SHAP values mean:
|
||||
#
|
||||
# ## SHAP Values and Delphi
|
||||
#
|
||||
# SHAP (SHapley Additive exPlanations) values help us understand how a machine learning model makes its predictions by showing the contribution of each input feature.
|
||||
#
|
||||
#
|
||||
# ### Example: Patient Trajectory
|
||||
#
|
||||
# Consider a simplified patient trajectory:
|
||||
# `Male, Migraine, Common cold, Brain cancer`
|
||||
#
|
||||
# For this trajectory, Delphi would predict a very high mortality risk (aka high rate for the Death token being next). Say, 95% chance of death within a year. Why? Technically, we don't know, since neural networks are black boxes.
|
||||
#
|
||||
# Let's try masking several tokens and predicting the next token again.
|
||||
#
|
||||
# `Male, [Masked: Migraine], Common cold, Brain cancer` -> 95% chance of death within a year, no change
|
||||
#
|
||||
# `Male, Migraine, Common cold, [Masked: Brain cancer]` -> 5% chance of death within a year, risk drops significantly
|
||||
#
|
||||
# Without speaking about causality, we can assume that there is *some* connection between brain cancer and death risk. SHAP framework allows using such masking to systematically assess the contribution of each token to the prediction. We can perform this analysis for all trajectories in the dataset and evaluate how, on average, a given disease influences the risk of any other disease.
|
||||
#
|
||||
# In case of Delphi, masking means replacing a disease token with "no event" token for all input tokens, except for the sex token that is inverted.
|
||||
|
||||
# In[2]:
|
||||
|
||||
|
||||
import os
|
||||
import pickle
|
||||
import torch
|
||||
from model import DelphiConfig, Delphi
|
||||
from tqdm import tqdm
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import textwrap
|
||||
import warnings
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
get_ipython().run_line_magic('config', "InlineBackend.figure_format='retina'")
|
||||
|
||||
plt.rcParams['figure.facecolor'] = 'white'
|
||||
plt.rcParams.update({'axes.grid': True,
|
||||
'grid.linestyle': ':',
|
||||
'axes.spines.bottom': False,
|
||||
'axes.spines.left': False,
|
||||
'axes.spines.right': False,
|
||||
'axes.spines.top': False})
|
||||
plt.rcParams['figure.dpi']= 72
|
||||
plt.rcParams['pdf.fonttype'] = 42
|
||||
|
||||
delphi_labels = pd.read_csv('delphi_labels_chapters_colours_icd.csv')
|
||||
|
||||
|
||||
# ## Load model
|
||||
|
||||
# In[3]:
|
||||
|
||||
|
||||
out_dir = 'Delphi-2M'
|
||||
device = 'cuda' # examples: 'cpu', 'cuda', 'cuda:0', 'cuda:1', etc.
|
||||
dtype ='float32' #'bfloat16' # 'float32' or 'bfloat16' or 'float16'
|
||||
seed = 1337
|
||||
|
||||
torch.manual_seed(seed)
|
||||
torch.cuda.manual_seed(seed)
|
||||
torch.backends.cuda.matmul.allow_tf32 = True
|
||||
torch.backends.cudnn.allow_tf32 = True
|
||||
|
||||
device_type = 'cuda' if 'cuda' in device else 'cpu'
|
||||
dtype = {'float32': torch.float32, 'float64': torch.float64, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
|
||||
|
||||
|
||||
# In[4]:
|
||||
|
||||
|
||||
ckpt_path = os.path.join(out_dir, 'ckpt.pt')
|
||||
checkpoint = torch.load(ckpt_path, map_location=device)
|
||||
conf = DelphiConfig(**checkpoint['model_args'])
|
||||
model = Delphi(conf)
|
||||
state_dict = checkpoint['model']
|
||||
model.load_state_dict(state_dict)
|
||||
|
||||
model.eval()
|
||||
model = model.to(device)
|
||||
|
||||
|
||||
# ## Load data
|
||||
|
||||
# In[5]:
|
||||
|
||||
|
||||
from utils import get_batch, get_p2i
|
||||
|
||||
train = np.fromfile('data/ukb_simulated_data/train.bin', dtype=np.uint32).reshape(-1,3)
|
||||
val = np.fromfile('data/ukb_simulated_data/val.bin', dtype=np.uint32).reshape(-1,3)
|
||||
|
||||
train_p2i = get_p2i(train)
|
||||
val_p2i = get_p2i(val)
|
||||
|
||||
|
||||
# In[6]:
|
||||
|
||||
|
||||
# define a random example health trajectory
|
||||
|
||||
person = [('Male', 0),
|
||||
('B01 Varicella [chickenpox]',2),
|
||||
('L20 Atopic dermatitis',3),
|
||||
('Healthy', 5),
|
||||
('Healthy', 10),
|
||||
('Healthy', 15),
|
||||
('Healthy', 20),
|
||||
('G43 Migraine', 20),
|
||||
('E73 Lactose intolerance', 21),
|
||||
('B27 Infectious mononucleosis', 22),
|
||||
('Healthy', 25),
|
||||
('J11 Influenza, virus not identified', 28),
|
||||
('Healthy', 30),
|
||||
('Healthy', 35),
|
||||
('C25 Malignant neoplasm of pancreas', 38),
|
||||
('Healthy', 40),
|
||||
('Smoking low', 41),
|
||||
('BMI mid', 41),
|
||||
('Alcohol high', 41),
|
||||
('Healthy', 42),
|
||||
]
|
||||
person = [(a, b * 365.25) for a,b in person]
|
||||
|
||||
|
||||
# ### Individual SHAP values
|
||||
|
||||
# In[7]:
|
||||
|
||||
|
||||
# define helper functions
|
||||
|
||||
id_to_token = delphi_labels['name'].to_dict()
|
||||
token_to_id = {v:k for k, v in id_to_token.items()}
|
||||
|
||||
def tokens_to_ids(tokens):
|
||||
return [token_to_id[t] for t in tokens]
|
||||
|
||||
def ids_to_tokens(ids):
|
||||
return [id_to_token[int(id_)] for id_ in ids]
|
||||
|
||||
def split_person(p):
|
||||
tokens = [i[0] for i in p]
|
||||
ages = [i[1] for i in p]
|
||||
return tokens, ages
|
||||
|
||||
def get_person(idx):
|
||||
x, y, _, time = get_batch([idx], val, val_p2i,
|
||||
select='left', block_size=48,
|
||||
device=device, padding='random')
|
||||
x, y = x[y > -1], y[y > -1]
|
||||
person = []
|
||||
for token_id, date in zip(x, y):
|
||||
person.append((id_to_token[token_id.item()], date.item()))
|
||||
return person, y, time[0][-1]
|
||||
|
||||
|
||||
# In[8]:
|
||||
|
||||
|
||||
from utils import shap_custom_tokenizer, shap_model_creator
|
||||
import shap
|
||||
|
||||
# person_to_process = get_person(137)[0]
|
||||
person_to_process = person
|
||||
diseases_of_interest = [1269, 46, 95, 1168, 374, 173, 214, 305, 505, 584]
|
||||
|
||||
person_tokens, person_ages = split_person(person_to_process)
|
||||
person_tokens_ids = tokens_to_ids(person_tokens)
|
||||
|
||||
masker = shap.maskers.Text(shap_custom_tokenizer, output_type='str', mask_token='10000', collapse_mask_token=False)
|
||||
model_shap = shap_model_creator(model, diseases_of_interest, person_tokens_ids, person_ages, device)
|
||||
explainer = shap.Explainer(model_shap, masker, output_names=delphi_labels['name'].values[diseases_of_interest])
|
||||
|
||||
shap_values = explainer([' '.join(list(map(lambda x: str(token_to_id[x]), person_tokens)))])
|
||||
shap_values.data = np.array([list(map(lambda x: f"{delphi_labels['name'].values[token_to_id[x[0]]]}({x[1]/365:.1f} years) ", person_to_process))])
|
||||
|
||||
|
||||
# In[9]:
|
||||
|
||||
|
||||
out = shap.plots.text(shap_values, display=True) # sometimes this interactive plot can't be rendered well (eg in VS Code, feel free to skip it)
|
||||
|
||||
|
||||
# In[10]:
|
||||
|
||||
|
||||
# SHAP values can be interpreted as how much each input token changes predicted logit corresponding to a particular disease.
|
||||
# As Delphi logits are log-disease rates, we can convent SHAP values to the disease-specific fold risk changes.
|
||||
|
||||
# Shown below is a waterfall plot, showing SHAP values for the most "influential" diseases within
|
||||
# a single trajectory.
|
||||
|
||||
from plotting import waterfall
|
||||
|
||||
with plt.style.context('default'):
|
||||
plt.rcParams['pdf.fonttype'] = 42
|
||||
plt.rcParams['figure.dpi'] = 150
|
||||
plt.rcParams['font.size'] = 4
|
||||
waterfall(shap_values[0, ..., 0], max_display=7, show=False, ages=person_ages)
|
||||
plt.gca().set_title('Impact of diseases on mortality', fontweight=1, size=18)
|
||||
plt.show()
|
||||
|
||||
|
||||
# ## Pre-computed many cases
|
||||
#
|
||||
# The small synthetic dataset is not enough to properly run following part; if you have access to the full dataset, run `shap-agg-eval.py` to evaluate SHAP values for the entire dataset.
|
||||
|
||||
# In[11]:
|
||||
|
||||
|
||||
import pickle
|
||||
|
||||
with open('shap_agg.pickle', 'rb') as f:
|
||||
shap_pkl = pickle.load(f)
|
||||
|
||||
all_tokens = shap_pkl['tokens']
|
||||
all_values = shap_pkl['values']
|
||||
|
||||
|
||||
# In[12]:
|
||||
|
||||
|
||||
import pandas as pd
|
||||
import seaborn as sns
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
df_shap = pd.DataFrame(all_values)
|
||||
df_shap['token'] = all_tokens.astype('int')
|
||||
|
||||
|
||||
# In[13]:
|
||||
|
||||
|
||||
token_count_dict = df_shap['token'].value_counts().sort_index().to_dict()
|
||||
|
||||
N_min = 5 # we will only consider diseases that have at least 5 calculated SHAP values, otherwise they are too noisy
|
||||
|
||||
columns_more_N = [c for c in df_shap.columns if c == 1269 or (c in token_count_dict and token_count_dict[c] >= N_min)]
|
||||
df_shap_agg = df_shap[df_shap['token'].apply(lambda x: token_count_dict[x] > N_min)].groupby('token').mean()
|
||||
|
||||
|
||||
# Since we now have calculated SHAP values for the entire dataset, we can use them to analyse "connections" between diseases.
|
||||
#
|
||||
# For every "predicted"-"predictor" pair, we average all SHAP values for the given pair.
|
||||
#
|
||||
# We can further analyse them in sevaral directions:
|
||||
# - For a given disease in the past medical history, which disease rates are most increased by it?
|
||||
# - For a given potential future disease, having which disease in the past medical history would most increase its rate?
|
||||
#
|
||||
# Let's see which diseases increase disease risk the most and also which diseases are most influenced by being a heavy smoker.
|
||||
|
||||
# In[14]:
|
||||
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
|
||||
def plot_shap_distribution(df_melted, y_axis_labels, group_by_col_name, title, x_lim_tuple, highlight_last_dot=True):
|
||||
"""
|
||||
Generates a plot showing median and quartile ranges of SHAP values for different tokens.
|
||||
"""
|
||||
plt.figure(figsize=(3, 6), facecolor='w')
|
||||
ax = plt.gca()
|
||||
|
||||
for i, label_for_y_tick in enumerate(y_axis_labels):
|
||||
data_for_label = df_melted[df_melted[group_by_col_name] == label_for_y_tick]['value']
|
||||
|
||||
if not data_for_label.empty:
|
||||
median = np.median(data_for_label)
|
||||
quartiles = np.percentile(data_for_label, [25, 75])
|
||||
|
||||
dot_color = 'red' if highlight_last_dot and i == len(y_axis_labels) - 1 else 'black'
|
||||
ax.plot(median, i, 'o', color=dot_color, zorder=3)
|
||||
ax.hlines(i, quartiles[0], quartiles[1], color='gray', linestyles='solid', linewidth=1)
|
||||
|
||||
plt.title(title)
|
||||
plt.yticks(range(len(y_axis_labels)), y_axis_labels)
|
||||
plt.xticks(rotation=25, ha='right')
|
||||
plt.xscale('log')
|
||||
plt.xlim(*x_lim_tuple)
|
||||
plt.xlabel('Risk increase, folds', size=11, labelpad=10)
|
||||
plt.show()
|
||||
|
||||
target_token = 1269
|
||||
n_first = 20
|
||||
plot = True
|
||||
|
||||
selected_context_tokens1 = df_shap_agg[target_token].nlargest(n_first).index[::-1]
|
||||
|
||||
df_plot_source = df_shap[df_shap['token'].isin(selected_context_tokens1)]
|
||||
df_plot_melted = df_plot_source[[target_token, 'token']].reset_index(drop=True).melt(id_vars=['token'], value_vars=[target_token])
|
||||
df_plot_melted['context_token_label'] = df_plot_melted['token'].map(id_to_token)
|
||||
df_plot_melted['value'] = np.exp(df_plot_melted['value'])
|
||||
|
||||
y_axis_labels1 = [id_to_token[token] for token in selected_context_tokens1]
|
||||
title1 = 'Mortality factors'
|
||||
xlim1 = (1, 1000)
|
||||
|
||||
plot_shap_distribution(
|
||||
df_melted=df_plot_melted,
|
||||
y_axis_labels=y_axis_labels1,
|
||||
group_by_col_name='context_token_label',
|
||||
title=title1,
|
||||
x_lim_tuple=xlim1
|
||||
)
|
||||
|
||||
|
||||
# In[15]:
|
||||
|
||||
|
||||
target_token = 9
|
||||
n_first = 20
|
||||
|
||||
shap_values_for_context = df_shap_agg.loc[target_token]
|
||||
selected_feature_tokens2 = shap_values_for_context.sort_values(ascending=False).index[:n_first][::-1]
|
||||
|
||||
df_plot_source = df_shap[df_shap['token'] == target_token]
|
||||
df_plot_melted = df_plot_source[[*selected_feature_tokens2, 'token']].reset_index(drop=True).melt(
|
||||
id_vars=['token'],
|
||||
value_vars=selected_feature_tokens2,
|
||||
var_name='feature_token_id',
|
||||
value_name='raw_shap_value'
|
||||
)
|
||||
df_plot_melted['feature_label'] = df_plot_melted['feature_token_id'].map(id_to_token)
|
||||
df_plot_melted['value'] = np.exp(df_plot_melted['raw_shap_value'])
|
||||
|
||||
y_axis_labels = [id_to_token[token] for token in selected_feature_tokens2]
|
||||
title = 'Consequences of\nsmoking heavily'
|
||||
xlim = (1, 11)
|
||||
|
||||
plot_shap_distribution(
|
||||
df_melted=df_plot_melted,
|
||||
y_axis_labels=y_axis_labels,
|
||||
group_by_col_name='feature_label',
|
||||
title=title,
|
||||
x_lim_tuple=xlim
|
||||
)
|
||||
|
||||
|
||||
# ### Time-resolved SHAP analysis
|
||||
#
|
||||
# Before, we aggregated the calculated SHAP values in a fairly simple way: just averaged them within all "predictor-predicted" pairs. This is an oversimplification, since the context in which these two diseases occur is also important.
|
||||
#
|
||||
# For instance, the amount of time passed since the "predictor" disease occured is important, since some acute conditions may have vastly different effects compared to their chronic forms.
|
||||
#
|
||||
# Now, we will aggregate SHAP values within the pairs, additionally separating them by the time between the "predictor" and "predicted" diseases.
|
||||
|
||||
# In[16]:
|
||||
|
||||
|
||||
d = get_batch(range(len(np.unique(shap_pkl['people']))), val, val_p2i,
|
||||
select='left', block_size=48,
|
||||
device='cpu', padding='regular')
|
||||
|
||||
|
||||
# In[17]:
|
||||
|
||||
|
||||
has_gender = torch.isin(d[0], torch.tensor([2, 3])).any(dim=1).numpy()
|
||||
is_male = torch.isin(d[0], torch.tensor([3])).any(dim=1).numpy()
|
||||
is_female = torch.isin(d[0], torch.tensor([2])).any(dim=1).numpy()
|
||||
|
||||
|
||||
# In[18]:
|
||||
|
||||
|
||||
def get_person(idx):
|
||||
x, y, _, time = get_batch([idx], val, val_p2i,
|
||||
select='left', block_size=64,
|
||||
device=device, padding='random',
|
||||
cut_batch=True)
|
||||
|
||||
x, y = x[y > -1], y[y > -1]
|
||||
person = []
|
||||
for token_id, date in zip(x, y):
|
||||
person.append((id_to_token[token_id.item()], date.item()))
|
||||
return person, y, time[0][-1]
|
||||
|
||||
|
||||
# In[19]:
|
||||
|
||||
|
||||
# the shap result pickle does not contain time, so we need to add it
|
||||
|
||||
persons_lengths = []
|
||||
ages = []
|
||||
reg_times = []
|
||||
|
||||
for p in tqdm(np.unique(shap_pkl['people'])):
|
||||
pers = get_person(p)
|
||||
|
||||
reg_time_idx = np.where(np.isin(tokens_to_ids(np.array(pers[0])[:, 0]), np.arange(4, 13)))[0]
|
||||
if len(reg_time_idx) > 0:
|
||||
reg_time = pers[0][reg_time_idx[0]][1]
|
||||
else:
|
||||
reg_time = -1
|
||||
|
||||
reg_times += [reg_time] * len(pers[0])
|
||||
persons_lengths += [p] * len(pers[0])
|
||||
ages += [pers[-1].item()] * len(pers[0])
|
||||
|
||||
assert len(ages) == len(df_shap)
|
||||
|
||||
|
||||
# In[20]:
|
||||
|
||||
|
||||
all_tokens = shap_pkl['tokens']
|
||||
all_values = shap_pkl['values']
|
||||
all_times = shap_pkl['times']
|
||||
|
||||
df_shap = pd.DataFrame(all_values)
|
||||
df_shap['token'] = all_tokens
|
||||
df_shap['time'] = all_times
|
||||
df_shap['person'] = shap_pkl['people']
|
||||
df_shap['age'] = np.array(ages) / 365.25
|
||||
df_shap['reg_time_years'] = np.array(reg_times) / 365.25
|
||||
|
||||
df_shap['Time, years'] = df_shap['time'] / 365.25
|
||||
df_shap['age_at_token'] = df_shap['age'] - df_shap['time'] / 365.25
|
||||
|
||||
df_shap = df_shap[df_shap['reg_time_years'] > 0]
|
||||
|
||||
token_count_dict = df_shap['token'].value_counts().sort_index().to_dict()
|
||||
|
||||
|
||||
# In[22]:
|
||||
|
||||
|
||||
import numpy as np
|
||||
|
||||
def bins_avg(x, y, grid_size=3):
|
||||
'''Filter out regions wiht few data points'''
|
||||
x, y = np.array(x), np.array(y)
|
||||
|
||||
bin_edges = np.arange(np.min(x), np.max(x), grid_size)
|
||||
|
||||
bin_indices = np.digitize(x, bin_edges)
|
||||
bin_avgs = np.array([y[bin_indices == i].mean() for i in range(1, len(bin_edges)+1)])
|
||||
|
||||
return bin_edges, bin_avgs
|
||||
|
||||
|
||||
# In[23]:
|
||||
|
||||
|
||||
tokens_of_interest = [46, 95, 1168, 1188, 173, 214, 305, 505, 584]
|
||||
n_groups = len(tokens_of_interest) // 5 + 1
|
||||
|
||||
palette_faint = [sns.color_palette("Paired")[0], sns.color_palette("Paired")[2], sns.color_palette("Paired")[4]]
|
||||
palette_bright = [sns.color_palette("Paired")[1], sns.color_palette("Paired")[3], sns.color_palette("Paired")[5]]
|
||||
|
||||
for num_g, token_group in enumerate(np.array_split(tokens_of_interest, n_groups)):
|
||||
|
||||
fig, axs = plt.subplots(1, 5, figsize=(12, 2), sharey=True)
|
||||
|
||||
for num, (ax, token_id) in enumerate(zip(axs.flatten(), token_group)):
|
||||
df_trait = df_shap[df_shap['token'] == token_id].copy()
|
||||
df_trait[1269] = np.exp(df_trait[1269].values)
|
||||
df_trait['Time, years'] = df_trait['time'] / 365.25
|
||||
df_trait = df_trait.head(2000)
|
||||
if len(df_trait) < 2:
|
||||
continue
|
||||
|
||||
sns.scatterplot(data=df_trait, x='Time, years', y=1269, ax=ax, color=palette_faint[0], alpha=0.7, rasterized=True)
|
||||
|
||||
x, y = df_trait['Time, years'], df_trait[1269]
|
||||
n = 3
|
||||
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter('ignore')
|
||||
x, y = bins_avg(x, y, grid_size=n)
|
||||
|
||||
ax.plot(x, y, color=palette_bright[0], linewidth=1.5)
|
||||
|
||||
ax.set_ylim(0.5, 500)
|
||||
ax.set_xlim(0.1, 10)
|
||||
ax.set_ylabel('Impact on mortality');
|
||||
ax.set_title(textwrap.fill(id_to_token[token_id], width=15) + f' {token_id}', size=9)
|
||||
# ax.set_xscale('log')
|
||||
|
||||
ax.set_yscale('log')
|
||||
plt.show()
|
||||
|
||||
|
||||
# As shown is the graph above, some diseases (pancteatic cancer, miocardial infarction, septiceamia) have a much higher impact on mortality if they occur in the recent past, while others (diabetis, depression) don't have a clear time-dependence.
|
||||
|
||||
# ## Interaction heatmap
|
||||
#
|
||||
# To analyse the interactions between diseases more systematically, we can plot a heatmap of the SHAP values for all "predictor-predicted" pairs, sorted by ICD-10 chapter.
|
||||
#
|
||||
# Let's plot two separate heatmaps, one for the cases where the "predictor" disease occured in the past 5 years (with the "predicted disease being the reference) and one for the cases where it occured more than 10 years ago.
|
||||
|
||||
# In[24]:
|
||||
|
||||
|
||||
N_min = 5
|
||||
|
||||
token_count_dict_below_5y = df_shap[df_shap['Time, years'] < 5]['token'].value_counts().sort_index().to_dict()
|
||||
token_count_dict_over_10y = df_shap[df_shap['Time, years'] > 10]['token'].value_counts().sort_index().to_dict()
|
||||
|
||||
for d in [token_count_dict_below_5y, token_count_dict_over_10y]:
|
||||
for i in range(1300):
|
||||
if i not in d:
|
||||
d[i] = 0
|
||||
|
||||
columns_more_N = [c for c in df_shap.columns if c == 1269 or(c in token_count_dict_below_5y and token_count_dict_below_5y[c] >= N_min and
|
||||
c in token_count_dict_over_10y and token_count_dict_over_10y[c] >= N_min)]
|
||||
df_shap_agg_below_5y = df_shap[df_shap['token'].apply(lambda x: x in columns_more_N) & (df_shap['Time, years'] < 5)].groupby('token').mean()[columns_more_N]
|
||||
df_shap_agg_over_10y = df_shap[df_shap['token'].apply(lambda x: x in columns_more_N) & (df_shap['Time, years'] > 10)].groupby('token').mean()[columns_more_N]
|
||||
|
||||
|
||||
# In[25]:
|
||||
|
||||
|
||||
from matplotlib.colors import LogNorm
|
||||
|
||||
to_exclude_predicted = ['Technical', 'Smoking, Alcohol and BMI', 'Sex', 'XVI. Perinatal Conditions']
|
||||
to_exclude_predictor = ['Technical', 'Smoking, Alcohol and BMI', 'Sex', 'XVI. Perinatal Conditions', 'Death']
|
||||
|
||||
chapter_order = ['I. Infectious Diseases', 'II. Neoplasms',
|
||||
'III. Blood & Immune Disorders', 'IV. Metabolic Diseases',
|
||||
'V. Mental Disorders', 'VI. Nervous System Diseases',
|
||||
'VII. Eye Diseases', 'VIII. Ear Diseases', 'IX. Circulatory Diseases', 'X. Respiratory Diseases',
|
||||
'XI. Digestive Diseases', 'XII. Skin Diseases',
|
||||
'XIII. Musculoskeletal Diseases', 'XIV. Genitourinary Diseases',
|
||||
'XV. Pregnancy & Childbirth', 'XVI. Perinatal Conditions',
|
||||
'XVII. Congenital Abnormalities', 'Death']
|
||||
|
||||
def get_tick_coords(arr):
|
||||
return np.where(arr[1:] != arr[:-1])[0]
|
||||
|
||||
def plot_full_shap_heatmap(cur_df, title):
|
||||
new_death_rows = 10
|
||||
|
||||
for c in range(1269+1, 1269+new_death_rows+1):
|
||||
cur_df[c] = cur_df[1269]
|
||||
|
||||
delphi_labels = pd.read_csv("delphi_labels_chapters_colours_icd.csv", index_col=0)
|
||||
death_df = delphi_labels[delphi_labels['ICD-10 Chapter (short)']=="Death"].sample(new_death_rows, replace=True)
|
||||
death_df['name'] = death_df['name'].apply(lambda x: x + str(np.random.randint(0, 100000)))
|
||||
death_df.index = pd.Index(range(1269+1, 1269+new_death_rows+1))
|
||||
delphi_labels = pd.concat([delphi_labels, death_df])
|
||||
|
||||
to_exclude_predicted_idx = delphi_labels[~delphi_labels['ICD-10 Chapter (short)'].isin(to_exclude_predicted)].index
|
||||
to_exclude_predictor_idx = delphi_labels[~delphi_labels['ICD-10 Chapter (short)'].isin(to_exclude_predictor)].index
|
||||
|
||||
to_exclude_predicted_idx = to_exclude_predicted_idx[to_exclude_predicted_idx.isin(cur_df.columns)]
|
||||
to_exclude_predicted_idx = sorted(to_exclude_predicted_idx, key=lambda x: (chapter_order.index(delphi_labels.loc[x, 'ICD-10 Chapter (short)']), x))
|
||||
to_exclude_predicted_idx = pd.Index(to_exclude_predicted_idx)
|
||||
|
||||
to_exclude_predictor_idx = to_exclude_predictor_idx[to_exclude_predictor_idx.isin(cur_df.index.values)]
|
||||
to_exclude_predictor_idx = sorted(to_exclude_predictor_idx, key=lambda x: (chapter_order.index(delphi_labels.loc[x, 'ICD-10 Chapter (short)']), x))
|
||||
to_exclude_predictor_idx = pd.Index(to_exclude_predictor_idx)
|
||||
|
||||
cur_df = cur_df.loc[to_exclude_predictor_idx, to_exclude_predicted_idx]
|
||||
|
||||
row_colors = delphi_labels.iloc[cur_df.index.values]['color'].to_numpy()
|
||||
col_colors = delphi_labels.iloc[cur_df.columns]['color'].to_numpy()
|
||||
|
||||
y_tick_coords = get_tick_coords(delphi_labels.iloc[cur_df.index.values]['color'].to_numpy())
|
||||
x_tick_coords = get_tick_coords(delphi_labels.iloc[cur_df.columns]['color'].to_numpy())
|
||||
|
||||
g = sns.clustermap(np.exp(cur_df.values), row_cluster=False, col_cluster=False,
|
||||
row_colors=row_colors, col_colors=col_colors,
|
||||
# norm=LogNorm(vmin=5e-2, vmax=2e1),
|
||||
norm=LogNorm(vmin=1e-1, vmax=1e1),
|
||||
cmap='RdBu_r',
|
||||
figsize=(8.5, 8.5),
|
||||
rasterized=True,
|
||||
)
|
||||
|
||||
g.ax_heatmap.set_xticks(x_tick_coords)
|
||||
g.ax_heatmap.set_yticks(y_tick_coords)
|
||||
g.ax_heatmap.tick_params(length=0, width=0.5, labelsize=8, grid_alpha=0.6, grid_linewidth=0.35, grid_color='gray')
|
||||
g.ax_cbar.tick_params(length=0.5, width=0.6, labelsize=8, grid_alpha=0.45, grid_linewidth=0.45)
|
||||
|
||||
for ch, color in delphi_labels[['ICD-10 Chapter (short)', 'color']].drop_duplicates('color').values:
|
||||
col_loc = np.where(col_colors == color)[0].mean() if (col_colors == color).any() else np.nan
|
||||
g.ax_heatmap.text(col_loc - 10, -60, ch, va='bottom', rotation=90, ha='left', size=8)
|
||||
|
||||
row_loc = np.where(row_colors == color)[0].mean() if (row_colors == color).any() else np.nan
|
||||
g.ax_heatmap.text(-70, row_loc, ch, va='center', ha='right', size=9)
|
||||
|
||||
from matplotlib.patches import Patch
|
||||
|
||||
# Create legend for chapter colors
|
||||
chapter_color_map = delphi_labels[['ICD-10 Chapter (short)', 'color']].drop_duplicates('color')
|
||||
chapter_color_map = chapter_color_map[~chapter_color_map['ICD-10 Chapter (short)'].isin(to_exclude_predicted)]
|
||||
handles = [Patch(facecolor=color) for color in chapter_color_map['color']]
|
||||
plt.legend(handles, chapter_color_map['ICD-10 Chapter (short)'], title='ICD-10 Chapters',
|
||||
bbox_transform=plt.gcf().transFigure, loc='center left', bbox_to_anchor=(.96, 0.5))
|
||||
|
||||
plt.suptitle(title, y=1.1, size=10, x=0.5)
|
||||
plt.show()
|
||||
|
||||
|
||||
# In[26]:
|
||||
|
||||
|
||||
plot_full_shap_heatmap(df_shap_agg_below_5y, 'Influence of tokens from below 5 years,\nrisk increase, folds')
|
||||
|
||||
|
||||
# In[27]:
|
||||
|
||||
|
||||
plot_full_shap_heatmap(df_shap_agg_over_10y, 'Influence of tokens from above 10 years,\nrisk increase, folds')
|
||||
|
||||
|
||||
# Interestingly, the resulting heatmap has a block diagonal structure, meaning that within a chapter the interactions between diseases tend to be stronger than between chapters.
|
||||
#
|
||||
# The second ("above 10 years") heatmap is also more pale, meaning that most of the disease-disease interactions get weaker over time.
|
Reference in New Issue
Block a user