config: Tune hyperparameters for multi-GPU training

Increase model size (n_embd, n_layer, n_head) for the multi-GPU configuration.

Explicitly set AdamW betas to (0.9, 0.99).
This commit is contained in:
2025-10-17 15:37:42 +08:00
parent d760c45baf
commit a832a45c62

View File

@@ -23,9 +23,9 @@ class TrainConfig:
block_length = 48 # Sequence length
# Model parameters
n_embd = 120
n_layer = 12
n_head = 12
n_embd = 256
n_layer = 16
n_head = 16
pdrop = 0.1
token_pdrop = 0.1
@@ -112,7 +112,7 @@ def main():
print(f"Model initialized with {model.module.get_num_params():.2f}M trainable parameters.")
loss_fn = CombinedLoss(config.ignored_token_ids)
optimizer = AdamW(model.parameters(), lr=config.lr_initial, weight_decay=config.weight_decay)
optimizer = AdamW(model.parameters(), lr=config.lr_initial, weight_decay=config.weight_decay, betas=(0.9, 0.99))
# --- 3. Training Loop ---
best_val_loss = float('inf')