Add evaluation scripts for age-bin time-dependent metrics and remove obsolete evaluation_time_dependent.py

This commit is contained in:
2026-01-16 16:13:31 +08:00
parent 502ddd153b
commit 90dffc3211
4 changed files with 597 additions and 349 deletions

View File

@@ -4,13 +4,13 @@ import argparse
import json
import math
import os
from typing import List, Sequence
from typing import List, Sequence, Tuple
import torch
from torch.utils.data import DataLoader, random_split
from dataset import HealthDataset, health_collate_fn
from evaluation_time_dependent import EvalConfig, evaluate_time_dependent
from evaluation_age_time_dependent import EvalAgeConfig, evaluate_time_dependent_age_bins
from losses import DiscreteTimeCIFNLLLoss, ExponentialNLLLoss, PiecewiseExponentialCIFNLLLoss
from model import DelphiFork, SapDelphi, SimpleHead
@@ -25,6 +25,20 @@ def _parse_floats(items: Sequence[str]) -> List[float]:
return out
def _parse_age_bin_edges(edges: Sequence[str]) -> List[float]:
vals = _parse_floats(edges)
if len(vals) < 2:
raise ValueError("--age_bin_edges must have at least 2 values")
for i in range(1, len(vals)):
if not (vals[i] > vals[i - 1]):
raise ValueError("--age_bin_edges must be strictly increasing")
return vals
def _edges_to_bins(edges: Sequence[float]) -> List[Tuple[float, float]]:
return [(float(edges[i]), float(edges[i + 1])) for i in range(len(edges) - 1)]
def build_criterion_and_out_dims(loss_type: str, n_disease: int, bin_edges, lambda_reg: float):
if loss_type == "exponential":
criterion = ExponentialNLLLoss(lambda_reg=lambda_reg)
@@ -90,44 +104,48 @@ def build_model(model_type: str, *, dataset: HealthDataset, cfg: dict):
def main() -> None:
parser = argparse.ArgumentParser(
description="Time-dependent evaluation for DeepHealth")
description="Delphi-2M-style age-bin time-dependent evaluation (writes per-bin and aggregated CSVs; aggregated includes agg_type={macro,weighted})")
parser.add_argument(
"--run_dir",
type=str,
required=True,
help="Training run directory (contains best_model.pt and train_config.json)",
)
parser.add_argument("--data_prefix", type=str, default=None,
help="Dataset prefix (overrides config if provided)")
parser.add_argument("--data_prefix", type=str, default=None)
parser.add_argument("--split", type=str,
choices=["train", "val", "test", "all"], default="val")
parser.add_argument("--horizons", type=str, nargs="+",
default=["0.25", "0.5", "1.0", "2.0", "5.0", "10.0"], help="One or more horizons (years)")
parser.add_argument("--offset_years", type=float, default=0.0,
help="Context selection offset (years before follow-up end)")
default=["0.25", "0.5", "1.0", "2.0", "5.0", "10.0"])
parser.add_argument(
"--age_bin_edges",
type=str,
nargs="+",
default=["40", "45", "50", "55", "60", "65", "70", "75", "80"],
help="Age bin edges in years (e.g., --age_bin_edges 40 45 50 ...). Bins are [edge[i], edge[i+1]).",
)
parser.add_argument(
"--topk_percent",
type=float,
nargs="+",
default=[1, 5, 10, 20, 50],
help="One or more K%% values for recall/precision@K%% (e.g., --topk_percent 1 5 10)",
help="One or more K%% values for recall/precision@K%%",
)
parser.add_argument("--n_mc", type=int, default=5)
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--device", type=str,
default="cuda" if torch.cuda.is_available() else "cpu")
parser.add_argument("--batch_size", type=int, default=256)
parser.add_argument("--num_workers", type=int,
default=0, help="Keep 0 on Windows")
parser.add_argument("--num_workers", type=int, default=0)
parser.add_argument("--out_csv", type=str, default=None,
help="Optional output CSV path")
parser.add_argument("--out_prefix", type=str,
default=None, help="Output prefix for CSVs")
args = parser.parse_args()
ckpt_path = os.path.join(args.run_dir, "best_model.pt")
cfg_path = os.path.join(args.run_dir, "train_config.json")
if not os.path.exists(ckpt_path):
raise SystemExit(f"Missing checkpoint: {ckpt_path}")
if not os.path.exists(cfg_path):
@@ -139,24 +157,23 @@ def main() -> None:
data_prefix = args.data_prefix if args.data_prefix is not None else cfg.get(
"data_prefix", "ukb")
# Match training covariate selection.
full_cov = bool(cfg.get("full_cov", False))
cov_list = None if full_cov else ["bmi", "smoking", "alcohol"]
dataset = HealthDataset(data_prefix=data_prefix, covariate_list=cov_list)
# Recreate the same split scheme as train.py
train_ratio = float(cfg.get("train_ratio", 0.7))
val_ratio = float(cfg.get("val_ratio", 0.15))
seed = int(cfg.get("random_seed", 42))
seed_split = int(cfg.get("random_seed", 42))
n_total = len(dataset)
n_train = int(n_total * train_ratio)
n_val = int(n_total * val_ratio)
n_test = n_total - n_train - n_val
train_ds, val_ds, test_ds = random_split(
dataset,
[n_train, n_val, n_test],
generator=torch.Generator().manual_seed(seed),
generator=torch.Generator().manual_seed(seed_split),
)
if args.split == "train":
@@ -203,14 +220,19 @@ def main() -> None:
head.to(device)
criterion.to(device)
eval_cfg = EvalConfig(
age_edges = _parse_age_bin_edges(args.age_bin_edges)
age_bins = _edges_to_bins(age_edges)
eval_cfg = EvalAgeConfig(
horizons_years=_parse_floats(args.horizons),
offset_years=float(args.offset_years),
age_bins=age_bins,
topk_percents=[float(x) for x in args.topk_percent],
n_mc=int(args.n_mc),
seed=int(args.seed),
cause_ids=None,
)
df = evaluate_time_dependent(
df_by_bin, df_agg = evaluate_time_dependent_age_bins(
model=model,
head=head,
criterion=criterion,
@@ -220,14 +242,20 @@ def main() -> None:
device=device,
)
if args.out_csv is None:
out_csv = os.path.join(
args.run_dir, f"time_dependent_metrics_{args.split}.csv")
if args.out_prefix is None:
out_prefix = os.path.join(
args.run_dir, f"age_bin_time_dependent_{args.split}")
else:
out_csv = args.out_csv
out_prefix = args.out_prefix
df.to_csv(out_csv, index=False)
print(f"Wrote: {out_csv}")
out_bin = out_prefix + "_by_bin.csv"
out_agg = out_prefix + "_agg.csv"
df_by_bin.to_csv(out_bin, index=False)
df_agg.to_csv(out_agg, index=False)
print(f"Wrote: {out_bin}")
print(f"Wrote: {out_agg}")
if __name__ == "__main__":

View File

@@ -0,0 +1,469 @@
from __future__ import annotations
import math
from dataclasses import dataclass
from typing import Dict, List, Optional, Sequence, Tuple
import numpy as np
import pandas as pd
import torch
try:
from tqdm import tqdm
except Exception: # pragma: no cover
def tqdm(x, **kwargs):
return x
from utils import (
multi_hot_ever_within_horizon,
multi_hot_selected_causes_within_horizon,
sample_context_in_fixed_age_bin,
)
def _binary_roc_auc(y_true: np.ndarray, y_score: np.ndarray) -> float:
"""Compute ROC AUC for binary labels with tie-aware ranking.
Returns NaN if y_true has no positives or no negatives.
Uses the MannWhitney U statistic with average ranks for ties.
"""
y_true = np.asarray(y_true).astype(bool)
y_score = np.asarray(y_score).astype(float)
n = y_true.size
if n == 0:
return float("nan")
n_pos = int(y_true.sum())
n_neg = n - n_pos
if n_pos == 0 or n_neg == 0:
return float("nan")
# Rank scores ascending, average ranks for ties.
order = np.argsort(y_score, kind="mergesort")
sorted_scores = y_score[order]
ranks = np.empty(n, dtype=float)
i = 0
# 1-based ranks
while i < n:
j = i + 1
while j < n and sorted_scores[j] == sorted_scores[i]:
j += 1
avg_rank = 0.5 * ((i + 1) + j) # ranks i+1 .. j
ranks[order[i:j]] = avg_rank
i = j
sum_ranks_pos = float(ranks[y_true].sum())
u = sum_ranks_pos - (n_pos * (n_pos + 1) / 2.0)
return float(u / (n_pos * n_neg))
def _average_precision(y_true: np.ndarray, y_score: np.ndarray) -> float:
"""Average precision (area under PR curve using step-wise interpolation).
Returns NaN if no positives.
"""
y_true = np.asarray(y_true).astype(bool)
y_score = np.asarray(y_score).astype(float)
n = y_true.size
if n == 0:
return float("nan")
n_pos = int(y_true.sum())
if n_pos == 0:
return float("nan")
order = np.argsort(-y_score, kind="mergesort")
y = y_true[order]
tp = np.cumsum(y).astype(float)
fp = np.cumsum(~y).astype(float)
precision = tp / np.maximum(tp + fp, 1.0)
# AP = sum over each positive of precision at that point / n_pos
# (equivalent to ∑ Δrecall * precision)
ap = float(np.sum(precision[y]) / n_pos)
# handle potential tiny numerical overshoots
return float(max(0.0, min(1.0, ap)))
def _precision_recall_at_k_percent(
y_true: np.ndarray,
y_score: np.ndarray,
k_percent: float,
) -> Tuple[float, float]:
"""Precision@K% and Recall@K% for binary labels.
Returns (precision, recall). Returns NaN for recall if no positives.
Returns NaN for precision if k leads to 0 selected.
"""
y_true = np.asarray(y_true).astype(bool)
y_score = np.asarray(y_score).astype(float)
n = y_true.size
if n == 0:
return float("nan"), float("nan")
n_pos = int(y_true.sum())
k = int(math.ceil((float(k_percent) / 100.0) * n))
if k <= 0:
return float("nan"), float("nan")
order = np.argsort(-y_score, kind="mergesort")
top = order[:k]
tp_top = int(y_true[top].sum())
precision = tp_top / k
recall = float("nan") if n_pos == 0 else (tp_top / n_pos)
return float(precision), float(recall)
@dataclass
class EvalAgeConfig:
horizons_years: Sequence[float]
age_bins: Sequence[Tuple[float, float]]
topk_percents: Sequence[float] = (1.0, 5.0, 10.0, 20.0, 50.0)
n_mc: int = 5
seed: int = 0
cause_ids: Optional[Sequence[int]] = None
@torch.no_grad()
def evaluate_time_dependent_age_bins(
model: torch.nn.Module,
head: torch.nn.Module,
criterion,
dataloader: torch.utils.data.DataLoader,
n_disease: int,
cfg: EvalAgeConfig,
device: str | torch.device,
) -> Tuple[pd.DataFrame, pd.DataFrame]:
"""Delphi-2M-style age-bin evaluation with strict horizon alignment.
Semantics (strict): for each (MC, horizon tau, age bin) we independently:
- build the eligible token set within that bin
- enforce follow-up coverage: t_ctx + tau <= t_end
- randomly sample exactly one token per individual within the bin (de-dup)
- recompute context representations and predictions for that (tau, bin)
Returns:
df_by_bin: rows keyed by (mc_idx, age_bin_id, horizon_tau, topk_percent, cause_id)
df_agg: aggregated metrics across age bins and MC with agg_type in {macro, weighted}
"""
device = torch.device(device)
model.eval()
head.eval()
horizons_years = [float(x) for x in cfg.horizons_years]
if len(horizons_years) == 0:
raise ValueError("cfg.horizons_years must be non-empty")
age_bins = [(float(a), float(b)) for (a, b) in cfg.age_bins]
if len(age_bins) == 0:
raise ValueError("cfg.age_bins must be non-empty")
for (a, b) in age_bins:
if not (b > a):
raise ValueError(
f"age_bins must be (low, high) with high>low; got {(a, b)}")
topk_percents = [float(x) for x in cfg.topk_percents]
if len(topk_percents) == 0:
raise ValueError("cfg.topk_percents must be non-empty")
if any((p <= 0.0 or p > 100.0) for p in topk_percents):
raise ValueError(
f"All topk_percents must be in (0,100]; got {topk_percents}")
if int(cfg.n_mc) <= 0:
raise ValueError("cfg.n_mc must be >= 1")
if cfg.cause_ids is None:
cause_ids = None
n_causes_eval = int(n_disease)
else:
cause_ids = torch.tensor(
list(cfg.cause_ids), dtype=torch.long, device=device)
n_causes_eval = int(cause_ids.numel())
# Storage: (mc, h, bin) -> list of arrays
y_true: List[List[List[List[np.ndarray]]]] = [
[[[] for _ in range(len(age_bins))] for _ in range(len(horizons_years))]
for _ in range(int(cfg.n_mc))
]
y_pred: List[List[List[List[np.ndarray]]]] = [
[[[] for _ in range(len(age_bins))] for _ in range(len(horizons_years))]
for _ in range(int(cfg.n_mc))
]
for mc_idx in range(int(cfg.n_mc)):
# tqdm over batches; include MC idx in description.
for batch_idx, batch in enumerate(
tqdm(dataloader,
desc=f"Evaluating (MC {mc_idx+1}/{cfg.n_mc})", unit="batch")
):
event_seq, time_seq, cont_feats, cate_feats, sexes = batch
event_seq = event_seq.to(device)
time_seq = time_seq.to(device)
cont_feats = cont_feats.to(device)
cate_feats = cate_feats.to(device)
sexes = sexes.to(device)
B = int(event_seq.size(0))
b = torch.arange(B, device=device)
for tau_idx, tau_y in enumerate(horizons_years):
for bin_idx, (a_lo, a_hi) in enumerate(age_bins):
# Diversify RNG stream across MC/tau/bin/batch to reduce correlation.
seed = (
int(cfg.seed)
+ (100_000 * int(mc_idx))
+ (1_000 * int(tau_idx))
+ (10 * int(bin_idx))
+ int(batch_idx)
)
keep, t_ctx = sample_context_in_fixed_age_bin(
event_seq=event_seq,
time_seq=time_seq,
tau_years=float(tau_y),
age_bin=(float(a_lo), float(a_hi)),
seed=seed,
)
if not keep.any():
continue
# Strict bin-specific prediction: recompute representations and logits per (tau, bin).
h = model(event_seq, time_seq, sexes,
cont_feats, cate_feats) # (B,L,D)
c = h[b, t_ctx]
logits = head(c)
cifs = criterion.calculate_cifs(
logits, taus=torch.tensor(float(tau_y), device=device)
)
if cifs.ndim != 2:
raise ValueError(
"criterion.calculate_cifs must return (B,K) for scalar tau; "
f"got shape={tuple(cifs.shape)}"
)
if cause_ids is None:
y = multi_hot_ever_within_horizon(
event_seq=event_seq,
time_seq=time_seq,
t_ctx=t_ctx,
tau_years=float(tau_y),
n_disease=n_disease,
)
preds = cifs
else:
y = multi_hot_selected_causes_within_horizon(
event_seq=event_seq,
time_seq=time_seq,
t_ctx=t_ctx,
tau_years=float(tau_y),
cause_ids=cause_ids,
n_disease=n_disease,
)
preds = cifs.index_select(dim=1, index=cause_ids)
y_true[mc_idx][tau_idx][bin_idx].append(
y[keep].detach().to(torch.bool).cpu().numpy()
)
y_pred[mc_idx][tau_idx][bin_idx].append(
preds[keep].detach().to(torch.float32).cpu().numpy()
)
rows_by_bin: List[Dict[str, float | int]] = []
for mc_idx in range(int(cfg.n_mc)):
for h_idx, tau_y in enumerate(horizons_years):
for bin_idx, (a_lo, a_hi) in enumerate(age_bins):
if len(y_true[mc_idx][h_idx][bin_idx]) == 0:
# No samples in this bin for this (mc, tau)
for cause_k in range(n_causes_eval):
cause_id = int(cause_k) if cause_ids is None else int(
cfg.cause_ids[cause_k])
for k_percent in topk_percents:
rows_by_bin.append(
dict(
mc_idx=mc_idx,
age_bin_id=bin_idx,
age_bin_low=float(a_lo),
age_bin_high=float(a_hi),
horizon_tau=float(tau_y),
topk_percent=float(k_percent),
cause_id=cause_id,
n_samples=0,
n_positives=0,
auc=float("nan"),
auprc=float("nan"),
recall_at_K=float("nan"),
precision_at_K=float("nan"),
brier_score=float("nan"),
)
)
continue
yb = np.concatenate(y_true[mc_idx][h_idx][bin_idx], axis=0)
pb = np.concatenate(y_pred[mc_idx][h_idx][bin_idx], axis=0)
if yb.shape != pb.shape:
raise ValueError(
f"Shape mismatch mc={mc_idx} tau={tau_y} bin={bin_idx}: y{tuple(yb.shape)} vs p{tuple(pb.shape)}"
)
n_samples = int(yb.shape[0])
for cause_k in range(n_causes_eval):
yk = yb[:, cause_k]
pk = pb[:, cause_k]
n_pos = int(yk.sum())
auc = _binary_roc_auc(yk, pk)
auprc = _average_precision(yk, pk)
brier = float(np.mean(
(yk.astype(float) - pk.astype(float)) ** 2)) if n_samples > 0 else float("nan")
cause_id = int(cause_k) if cause_ids is None else int(
cfg.cause_ids[cause_k])
for k_percent in topk_percents:
precision_k, recall_k = _precision_recall_at_k_percent(
yk, pk, float(k_percent))
rows_by_bin.append(
dict(
mc_idx=mc_idx,
age_bin_id=bin_idx,
age_bin_low=float(a_lo),
age_bin_high=float(a_hi),
horizon_tau=float(tau_y),
topk_percent=float(k_percent),
cause_id=cause_id,
n_samples=n_samples,
n_positives=n_pos,
auc=float(auc),
auprc=float(auprc),
recall_at_K=float(recall_k),
precision_at_K=float(precision_k),
brier_score=float(brier),
)
)
df_by_bin = pd.DataFrame(rows_by_bin)
def _bin_aggregate(group: pd.DataFrame, *, weighted: bool) -> pd.Series:
g = group[group["n_samples"] > 0]
if len(g) == 0:
return pd.Series(
dict(
n_bins_used=0,
n_samples_total=0,
n_positives_total=0,
auc=float("nan"),
auprc=float("nan"),
recall_at_K=float("nan"),
precision_at_K=float("nan"),
brier_score=float("nan"),
)
)
n_bins_used = int(g["age_bin_id"].nunique())
n_samples_total = int(g["n_samples"].sum())
n_positives_total = int(g["n_positives"].sum())
if not weighted:
return pd.Series(
dict(
n_bins_used=n_bins_used,
n_samples_total=n_samples_total,
n_positives_total=n_positives_total,
auc=float(g["auc"].mean()),
auprc=float(g["auprc"].mean()),
recall_at_K=float(g["recall_at_K"].mean()),
precision_at_K=float(g["precision_at_K"].mean()),
brier_score=float(g["brier_score"].mean()),
)
)
w = g["n_samples"].to_numpy(dtype=float)
w_sum = float(w.sum())
if w_sum <= 0.0:
return pd.Series(
dict(
n_bins_used=n_bins_used,
n_samples_total=n_samples_total,
n_positives_total=n_positives_total,
auc=float("nan"),
auprc=float("nan"),
recall_at_K=float("nan"),
precision_at_K=float("nan"),
brier_score=float("nan"),
)
)
def _wavg(col: str) -> float:
return float(np.average(g[col].to_numpy(dtype=float), weights=w))
return pd.Series(
dict(
n_bins_used=n_bins_used,
n_samples_total=n_samples_total,
n_positives_total=n_positives_total,
auc=_wavg("auc"),
auprc=_wavg("auprc"),
recall_at_K=_wavg("recall_at_K"),
precision_at_K=_wavg("precision_at_K"),
brier_score=_wavg("brier_score"),
)
)
group_keys = ["mc_idx", "horizon_tau", "topk_percent", "cause_id"]
df_mc_macro = (
df_by_bin.groupby(group_keys)
.apply(lambda g: _bin_aggregate(g, weighted=False))
.reset_index()
)
df_mc_macro["agg_type"] = "macro"
df_mc_weighted = (
df_by_bin.groupby(group_keys)
.apply(lambda g: _bin_aggregate(g, weighted=True))
.reset_index()
)
df_mc_weighted["agg_type"] = "weighted"
df_mc_binagg = pd.concat([df_mc_macro, df_mc_weighted], ignore_index=True)
# Then average over MC repetitions.
df_agg = (
df_mc_binagg.groupby(
["agg_type", "horizon_tau", "topk_percent", "cause_id"], as_index=False
)
.agg(
n_mc=("mc_idx", "nunique"),
n_bins_used_mean=("n_bins_used", "mean"),
n_samples_total_mean=("n_samples_total", "mean"),
n_positives_total_mean=("n_positives_total", "mean"),
auc_mean=("auc", "mean"),
auc_std=("auc", "std"),
auprc_mean=("auprc", "mean"),
auprc_std=("auprc", "std"),
recall_at_K_mean=("recall_at_K", "mean"),
recall_at_K_std=("recall_at_K", "std"),
precision_at_K_mean=("precision_at_K", "mean"),
precision_at_K_std=("precision_at_K", "std"),
brier_score_mean=("brier_score", "mean"),
brier_score_std=("brier_score", "std"),
)
.sort_values(
["agg_type", "horizon_tau", "topk_percent", "cause_id"],
ignore_index=True,
)
)
return df_by_bin, df_agg

View File

@@ -1,322 +0,0 @@
from __future__ import annotations
import math
from dataclasses import dataclass
from typing import Dict, List, Optional, Sequence, Tuple
import numpy as np
import pandas as pd
import torch
from utils import (
DAYS_PER_YEAR,
multi_hot_ever_within_horizon,
multi_hot_selected_causes_within_horizon,
select_context_indices,
)
def _binary_roc_auc(y_true: np.ndarray, y_score: np.ndarray) -> float:
"""Compute ROC AUC for binary labels with tie-aware ranking.
Returns NaN if y_true has no positives or no negatives.
Uses the MannWhitney U statistic with average ranks for ties.
"""
y_true = np.asarray(y_true).astype(bool)
y_score = np.asarray(y_score).astype(float)
n = y_true.size
if n == 0:
return float("nan")
n_pos = int(y_true.sum())
n_neg = n - n_pos
if n_pos == 0 or n_neg == 0:
return float("nan")
# Rank scores ascending, average ranks for ties.
order = np.argsort(y_score, kind="mergesort")
sorted_scores = y_score[order]
ranks = np.empty(n, dtype=float)
i = 0
# 1-based ranks
while i < n:
j = i + 1
while j < n and sorted_scores[j] == sorted_scores[i]:
j += 1
avg_rank = 0.5 * ((i + 1) + j) # ranks i+1 .. j
ranks[order[i:j]] = avg_rank
i = j
sum_ranks_pos = float(ranks[y_true].sum())
u = sum_ranks_pos - (n_pos * (n_pos + 1) / 2.0)
return float(u / (n_pos * n_neg))
def _average_precision(y_true: np.ndarray, y_score: np.ndarray) -> float:
"""Average precision (area under PR curve using step-wise interpolation).
Returns NaN if no positives.
"""
y_true = np.asarray(y_true).astype(bool)
y_score = np.asarray(y_score).astype(float)
n = y_true.size
if n == 0:
return float("nan")
n_pos = int(y_true.sum())
if n_pos == 0:
return float("nan")
order = np.argsort(-y_score, kind="mergesort")
y = y_true[order]
tp = np.cumsum(y).astype(float)
fp = np.cumsum(~y).astype(float)
precision = tp / np.maximum(tp + fp, 1.0)
recall = tp / n_pos
# AP = sum over each positive of precision at that point / n_pos
# (equivalent to ∑ Δrecall * precision)
ap = float(np.sum(precision[y]) / n_pos)
# handle potential tiny numerical overshoots
return float(max(0.0, min(1.0, ap)))
def _precision_recall_at_k_percent(
y_true: np.ndarray,
y_score: np.ndarray,
k_percent: float,
) -> Tuple[float, float]:
"""Precision@K% and Recall@K% for binary labels.
Returns (precision, recall). Returns NaN for recall if no positives.
Returns NaN for precision if k leads to 0 selected.
"""
y_true = np.asarray(y_true).astype(bool)
y_score = np.asarray(y_score).astype(float)
n = y_true.size
if n == 0:
return float("nan"), float("nan")
n_pos = int(y_true.sum())
k = int(math.ceil((float(k_percent) / 100.0) * n))
if k <= 0:
return float("nan"), float("nan")
order = np.argsort(-y_score, kind="mergesort")
top = order[:k]
tp_top = int(y_true[top].sum())
precision = tp_top / k
recall = float("nan") if n_pos == 0 else (tp_top / n_pos)
return float(precision), float(recall)
@dataclass
class EvalConfig:
horizons_years: Sequence[float]
offset_years: float = 0.0
topk_percents: Sequence[float] = (1.0, 5.0, 10.0, 20.0, 50.0)
cause_ids: Optional[Sequence[int]] = None
@torch.no_grad()
def evaluate_time_dependent(
model: torch.nn.Module,
head: torch.nn.Module,
criterion,
dataloader: torch.utils.data.DataLoader,
n_disease: int,
cfg: EvalConfig,
device: str | torch.device,
) -> pd.DataFrame:
"""Evaluate time-dependent metrics per cause and per horizon.
Assumptions:
- time_seq is in days
- horizons_years and the loss CIF times are in years
- disease token ids in event_seq are >= 2 and map to cause_id = token_id - 2
Returns:
DataFrame with columns:
cause_id, horizon_tau, topk_percent, n_samples, n_positives, auc, auprc,
recall_at_K, precision_at_K, brier_score
"""
device = torch.device(device)
model.eval()
head.eval()
horizons_years = [float(x) for x in cfg.horizons_years]
if len(horizons_years) == 0:
raise ValueError("cfg.horizons_years must be non-empty")
topk_percents = [float(x) for x in cfg.topk_percents]
if len(topk_percents) == 0:
raise ValueError("cfg.topk_percents must be non-empty")
if any((p <= 0.0 or p > 100.0) for p in topk_percents):
raise ValueError(
f"All topk_percents must be in (0,100]; got {topk_percents}")
taus_tensor = torch.tensor(
horizons_years, device=device, dtype=torch.float32)
if cfg.cause_ids is None:
cause_ids = None
n_causes_eval = int(n_disease)
else:
cause_ids = torch.tensor(
list(cfg.cause_ids), dtype=torch.long, device=device)
n_causes_eval = int(cause_ids.numel())
# Accumulate per horizon
y_true_by_h: List[List[np.ndarray]] = [[] for _ in horizons_years]
y_pred_by_h: List[List[np.ndarray]] = [[] for _ in horizons_years]
for batch in dataloader:
event_seq, time_seq, cont_feats, cate_feats, sexes = batch
event_seq = event_seq.to(device)
time_seq = time_seq.to(device)
cont_feats = cont_feats.to(device)
cate_feats = cate_feats.to(device)
sexes = sexes.to(device)
h = model(event_seq, time_seq, sexes, cont_feats, cate_feats) # (B,L,D)
# Select a single fixed context per sample for this batch.
# Horizon-specific eligibility is derived from this context (do not re-select per horizon).
keep0, t_ctx, t_ctx_time = select_context_indices(
event_seq=event_seq,
time_seq=time_seq,
offset_years=float(cfg.offset_years),
tau_years=0.0,
)
if not keep0.any():
continue
b = torch.arange(event_seq.size(0), device=device)
c = h[b, t_ctx] # (B,D)
logits = head(c)
# CIFs for all horizons at once
cifs_all = criterion.calculate_cifs(
logits, taus=taus_tensor) # (B,K,T) or (B,K)
if cifs_all.ndim != 3:
raise ValueError(
f"criterion.calculate_cifs must return (B,K,T) when taus is (T,), got shape={tuple(cifs_all.shape)}"
)
# Follow-up end time per sample = time at last valid token.
valid = event_seq != 0
lengths = valid.sum(dim=1)
last_idx = torch.clamp(lengths - 1, min=0)
followup_end_time = time_seq[b, last_idx]
for h_idx, tau_y in enumerate(horizons_years):
# Horizon-specific eligibility without reselecting context:
# keep_tau = keep0 & (followup_end_time >= t_ctx_time + tau)
keep_tau = keep0 & (
followup_end_time >= (
t_ctx_time + (float(tau_y) * DAYS_PER_YEAR))
)
if not keep_tau.any():
continue
if cause_ids is None:
y = multi_hot_ever_within_horizon(
event_seq=event_seq,
time_seq=time_seq,
t_ctx=t_ctx,
tau_years=float(tau_y),
n_disease=n_disease,
)
y = y[keep_tau]
preds = cifs_all[keep_tau, :, h_idx]
else:
y = multi_hot_selected_causes_within_horizon(
event_seq=event_seq,
time_seq=time_seq,
t_ctx=t_ctx,
tau_years=float(tau_y),
cause_ids=cause_ids,
n_disease=n_disease,
)
y = y[keep_tau]
preds = cifs_all[keep_tau, :, h_idx].index_select(
dim=1, index=cause_ids)
y_true_by_h[h_idx].append(y.detach().to(torch.bool).cpu().numpy())
y_pred_by_h[h_idx].append(
preds.detach().to(torch.float32).cpu().numpy())
rows: List[Dict[str, float | int]] = []
for h_idx, tau_y in enumerate(horizons_years):
if len(y_true_by_h[h_idx]) == 0:
# No eligible samples for this horizon.
for k in range(n_causes_eval):
cause_id = int(k) if cause_ids is None else int(
cfg.cause_ids[k])
for k_percent in topk_percents:
rows.append(
dict(
cause_id=cause_id,
horizon_tau=float(tau_y),
topk_percent=float(k_percent),
n_samples=0,
n_positives=0,
auc=float("nan"),
auprc=float("nan"),
recall_at_K=float("nan"),
precision_at_K=float("nan"),
brier_score=float("nan"),
)
)
continue
y_true = np.concatenate(y_true_by_h[h_idx], axis=0)
y_pred = np.concatenate(y_pred_by_h[h_idx], axis=0)
if y_true.shape != y_pred.shape:
raise ValueError(
f"Shape mismatch at tau={tau_y}: y_true{tuple(y_true.shape)} vs y_pred{tuple(y_pred.shape)}"
)
n_samples = int(y_true.shape[0])
for k in range(n_causes_eval):
yk = y_true[:, k]
pk = y_pred[:, k]
n_pos = int(yk.sum())
auc = _binary_roc_auc(yk, pk)
auprc = _average_precision(yk, pk)
brier = float(np.mean((yk.astype(float) - pk.astype(float))
** 2)) if n_samples > 0 else float("nan")
cause_id = int(k) if cause_ids is None else int(cfg.cause_ids[k])
for k_percent in topk_percents:
precision_k, recall_k = _precision_recall_at_k_percent(
yk, pk, float(k_percent))
rows.append(
dict(
cause_id=cause_id,
horizon_tau=float(tau_y),
topk_percent=float(k_percent),
n_samples=n_samples,
n_positives=n_pos,
auc=float(auc),
auprc=float(auprc),
recall_at_K=float(recall_k),
precision_at_K=float(precision_k),
brier_score=float(brier),
)
)
return pd.DataFrame(rows)

View File

@@ -4,6 +4,79 @@ from typing import Tuple
DAYS_PER_YEAR = 365.25
def sample_context_in_fixed_age_bin(
event_seq: torch.Tensor,
time_seq: torch.Tensor,
tau_years: float,
age_bin: Tuple[float, float],
seed: int,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Sample one context token per individual within a fixed age bin.
Delphi-2M semantics for a specific (tau, age_bin):
- Token times are interpreted as age in *days* (converted to years).
- Follow-up end time is the last valid token time per individual.
- A token index j is eligible iff:
(token is valid)
AND (age_years in [age_low, age_high))
AND (time_seq[i, j] + tau_days <= followup_end_time[i])
- For each individual, randomly select exactly one eligible token in this bin.
Args:
event_seq: (B, L) token ids, 0 is padding.
time_seq: (B, L) token times in days.
tau_years: horizon length in years.
age_bin: (low, high) bounds in years, interpreted as [low, high).
seed: RNG seed for deterministic sampling.
Returns:
keep: (B,) bool, True if a context was sampled for this bin.
t_ctx: (B,) long, sampled context index (undefined when keep=False; set to 0).
"""
low, high = float(age_bin[0]), float(age_bin[1])
if not (high > low):
raise ValueError(f"age_bin must satisfy high>low; got {(low, high)}")
device = event_seq.device
B, _ = event_seq.shape
valid = event_seq != 0
lengths = valid.sum(dim=1)
last_idx = torch.clamp(lengths - 1, min=0)
b = torch.arange(B, device=device)
followup_end_time = time_seq[b, last_idx] # (B,)
tau_days = float(tau_years) * DAYS_PER_YEAR
age_years = time_seq / DAYS_PER_YEAR
in_bin = (age_years >= low) & (age_years < high)
eligible = valid & in_bin & (
(time_seq + tau_days) <= followup_end_time.unsqueeze(1))
keep = torch.zeros((B,), dtype=torch.bool, device=device)
t_ctx = torch.zeros((B,), dtype=torch.long, device=device)
gen = torch.Generator(device="cpu")
gen.manual_seed(int(seed))
for i in range(B):
m = eligible[i]
if not m.any():
continue
idxs = m.nonzero(as_tuple=False).view(-1).cpu()
chosen_idx_pos = int(
torch.randint(low=0, high=int(idxs.numel()),
size=(1,), generator=gen).item()
)
chosen_t = int(idxs[chosen_idx_pos].item())
keep[i] = True
t_ctx[i] = chosen_t
return keep, t_ctx
def select_context_indices(
event_seq: torch.Tensor,
time_seq: torch.Tensor,