Add binary metrics computation and refactor evaluation logic in age-bin evaluation
This commit is contained in:
@@ -20,6 +20,8 @@ from utils import (
|
||||
sample_context_in_fixed_age_bin,
|
||||
)
|
||||
|
||||
from torch_metrics import compute_binary_metrics_torch
|
||||
|
||||
|
||||
def aggregate_age_bin_results(df_by_bin: pd.DataFrame) -> pd.DataFrame:
|
||||
"""Aggregate per-bin age evaluation results.
|
||||
@@ -173,105 +175,8 @@ def aggregate_age_bin_results(df_by_bin: pd.DataFrame) -> pd.DataFrame:
|
||||
return df_agg
|
||||
|
||||
|
||||
def _binary_roc_auc(y_true: np.ndarray, y_score: np.ndarray) -> float:
|
||||
"""Compute ROC AUC for binary labels with tie-aware ranking.
|
||||
|
||||
Returns NaN if y_true has no positives or no negatives.
|
||||
|
||||
Uses the Mann–Whitney U statistic with average ranks for ties.
|
||||
"""
|
||||
y_true = np.asarray(y_true).astype(bool)
|
||||
y_score = np.asarray(y_score).astype(float)
|
||||
|
||||
n = y_true.size
|
||||
if n == 0:
|
||||
return float("nan")
|
||||
|
||||
n_pos = int(y_true.sum())
|
||||
n_neg = n - n_pos
|
||||
if n_pos == 0 or n_neg == 0:
|
||||
return float("nan")
|
||||
|
||||
# Rank scores ascending, average ranks for ties.
|
||||
order = np.argsort(y_score, kind="mergesort")
|
||||
sorted_scores = y_score[order]
|
||||
|
||||
ranks = np.empty(n, dtype=float)
|
||||
i = 0
|
||||
# 1-based ranks
|
||||
while i < n:
|
||||
j = i + 1
|
||||
while j < n and sorted_scores[j] == sorted_scores[i]:
|
||||
j += 1
|
||||
avg_rank = 0.5 * ((i + 1) + j) # ranks i+1 .. j
|
||||
ranks[order[i:j]] = avg_rank
|
||||
i = j
|
||||
|
||||
sum_ranks_pos = float(ranks[y_true].sum())
|
||||
u = sum_ranks_pos - (n_pos * (n_pos + 1) / 2.0)
|
||||
return float(u / (n_pos * n_neg))
|
||||
|
||||
|
||||
def _average_precision(y_true: np.ndarray, y_score: np.ndarray) -> float:
|
||||
"""Average precision (area under PR curve using step-wise interpolation).
|
||||
|
||||
Returns NaN if no positives.
|
||||
"""
|
||||
y_true = np.asarray(y_true).astype(bool)
|
||||
y_score = np.asarray(y_score).astype(float)
|
||||
|
||||
n = y_true.size
|
||||
if n == 0:
|
||||
return float("nan")
|
||||
|
||||
n_pos = int(y_true.sum())
|
||||
if n_pos == 0:
|
||||
return float("nan")
|
||||
|
||||
order = np.argsort(-y_score, kind="mergesort")
|
||||
y = y_true[order]
|
||||
|
||||
tp = np.cumsum(y).astype(float)
|
||||
fp = np.cumsum(~y).astype(float)
|
||||
precision = tp / np.maximum(tp + fp, 1.0)
|
||||
|
||||
# AP = sum over each positive of precision at that point / n_pos
|
||||
# (equivalent to ∑ Δrecall * precision)
|
||||
ap = float(np.sum(precision[y]) / n_pos)
|
||||
# handle potential tiny numerical overshoots
|
||||
return float(max(0.0, min(1.0, ap)))
|
||||
|
||||
|
||||
def _precision_recall_at_k_percent(
|
||||
y_true: np.ndarray,
|
||||
y_score: np.ndarray,
|
||||
k_percent: float,
|
||||
) -> Tuple[float, float]:
|
||||
"""Precision@K% and Recall@K% for binary labels.
|
||||
|
||||
Returns (precision, recall). Returns NaN for recall if no positives.
|
||||
Returns NaN for precision if k leads to 0 selected.
|
||||
"""
|
||||
y_true = np.asarray(y_true).astype(bool)
|
||||
y_score = np.asarray(y_score).astype(float)
|
||||
|
||||
n = y_true.size
|
||||
if n == 0:
|
||||
return float("nan"), float("nan")
|
||||
|
||||
n_pos = int(y_true.sum())
|
||||
|
||||
k = int(math.ceil((float(k_percent) / 100.0) * n))
|
||||
if k <= 0:
|
||||
return float("nan"), float("nan")
|
||||
|
||||
order = np.argsort(-y_score, kind="mergesort")
|
||||
top = order[:k]
|
||||
tp_top = int(y_true[top].sum())
|
||||
|
||||
precision = tp_top / k
|
||||
recall = float("nan") if n_pos == 0 else (tp_top / n_pos)
|
||||
return float(precision), float(recall)
|
||||
# NOTE: metric computation is torch/GPU-native in `torch_metrics.py`.
|
||||
# NumPy/Pandas are only used for final CSV formatting/aggregation.
|
||||
|
||||
|
||||
@dataclass
|
||||
@@ -341,18 +246,21 @@ def evaluate_time_dependent_age_bins(
|
||||
list(cfg.cause_ids), dtype=torch.long, device=device)
|
||||
n_causes_eval = int(cause_ids.numel())
|
||||
|
||||
# Storage: (mc, h, bin) -> list of CPU tensors (avoid .numpy() in inner loops)
|
||||
y_true: List[List[List[List[torch.Tensor]]]] = [
|
||||
[[[] for _ in range(len(age_bins))] for _ in range(len(horizons_years))]
|
||||
for _ in range(int(cfg.n_mc))
|
||||
]
|
||||
y_pred: List[List[List[List[torch.Tensor]]]] = [
|
||||
[[[] for _ in range(len(age_bins))] for _ in range(len(horizons_years))]
|
||||
for _ in range(int(cfg.n_mc))
|
||||
]
|
||||
rows_by_bin: List[Dict[str, float | int]] = []
|
||||
|
||||
for mc_idx in range(int(cfg.n_mc)):
|
||||
global_mc_idx = int(mc_offset) + int(mc_idx)
|
||||
|
||||
# Storage for this MC only: (tau, bin) -> list of GPU tensors.
|
||||
# This keeps computations GPU-first while preventing a factor-n_mc
|
||||
# blow-up in GPU memory.
|
||||
y_true_mc: List[List[List[torch.Tensor]]] = [
|
||||
[[] for _ in range(len(age_bins))] for _ in range(len(horizons_years))
|
||||
]
|
||||
y_pred_mc: List[List[List[torch.Tensor]]] = [
|
||||
[[] for _ in range(len(age_bins))] for _ in range(len(horizons_years))
|
||||
]
|
||||
|
||||
# tqdm over batches; include MC idx in description.
|
||||
for batch_idx, batch in enumerate(
|
||||
tqdm(dataloader,
|
||||
@@ -429,24 +337,17 @@ def evaluate_time_dependent_age_bins(
|
||||
)
|
||||
preds = cifs.index_select(dim=1, index=cause_ids)
|
||||
|
||||
# Reduce CPU/NumPy conversion overhead: keep as CPU torch tensors
|
||||
# and convert to NumPy once during aggregation.
|
||||
y_true[mc_idx][tau_idx][bin_idx].append(
|
||||
y[keep].detach().to(dtype=torch.bool,
|
||||
device="cpu", non_blocking=True)
|
||||
y_true_mc[tau_idx][bin_idx].append(
|
||||
y[keep].detach().to(dtype=torch.bool)
|
||||
)
|
||||
y_pred[mc_idx][tau_idx][bin_idx].append(
|
||||
preds[keep].detach().to(dtype=torch.float32,
|
||||
device="cpu", non_blocking=True)
|
||||
y_pred_mc[tau_idx][bin_idx].append(
|
||||
preds[keep].detach().to(dtype=torch.float32)
|
||||
)
|
||||
|
||||
rows_by_bin: List[Dict[str, float | int]] = []
|
||||
|
||||
for mc_idx in range(int(cfg.n_mc)):
|
||||
global_mc_idx = int(mc_offset) + int(mc_idx)
|
||||
# Aggregate this MC immediately (frees GPU memory before next MC).
|
||||
for h_idx, tau_y in enumerate(horizons_years):
|
||||
for bin_idx, (a_lo, a_hi) in enumerate(age_bins):
|
||||
if len(y_true[mc_idx][h_idx][bin_idx]) == 0:
|
||||
if len(y_true_mc[h_idx][bin_idx]) == 0:
|
||||
# No samples in this bin for this (mc, tau)
|
||||
for cause_k in range(n_causes_eval):
|
||||
cause_id = int(cause_k) if cause_ids is None else int(
|
||||
@@ -472,34 +373,37 @@ def evaluate_time_dependent_age_bins(
|
||||
)
|
||||
continue
|
||||
|
||||
yb_t = torch.cat(y_true[mc_idx][h_idx][bin_idx], dim=0)
|
||||
pb_t = torch.cat(y_pred[mc_idx][h_idx][bin_idx], dim=0)
|
||||
yb_t = torch.cat(y_true_mc[h_idx][bin_idx], dim=0)
|
||||
pb_t = torch.cat(y_pred_mc[h_idx][bin_idx], dim=0)
|
||||
if tuple(yb_t.shape) != tuple(pb_t.shape):
|
||||
raise ValueError(
|
||||
f"Shape mismatch mc={mc_idx} tau={tau_y} bin={bin_idx}: y{tuple(yb_t.shape)} vs p{tuple(pb_t.shape)}"
|
||||
)
|
||||
|
||||
yb = yb_t.numpy()
|
||||
pb = pb_t.numpy()
|
||||
n_samples = int(yb_t.size(0))
|
||||
|
||||
n_samples = int(yb.shape[0])
|
||||
metrics = compute_binary_metrics_torch(
|
||||
y_true=yb_t,
|
||||
y_pred=pb_t,
|
||||
k_percents=topk_percents,
|
||||
tie_mode="exact",
|
||||
chunk_size=128,
|
||||
compute_ici=False,
|
||||
)
|
||||
|
||||
# Move just the metric vectors to CPU once per (mc, tau, bin)
|
||||
# for DataFrame construction.
|
||||
auc = metrics.auc_per_cause.detach().cpu().numpy()
|
||||
auprc = metrics.ap_per_cause.detach().cpu().numpy()
|
||||
brier = metrics.brier_per_cause.detach().cpu().numpy()
|
||||
n_pos = metrics.n_pos_per_cause.detach().cpu().numpy()
|
||||
prec_at_k = metrics.precision_at_k.detach().cpu().numpy() # (P,K)
|
||||
rec_at_k = metrics.recall_at_k.detach().cpu().numpy() # (P,K)
|
||||
|
||||
for cause_k in range(n_causes_eval):
|
||||
yk = yb[:, cause_k]
|
||||
pk = pb[:, cause_k]
|
||||
n_pos = int(yk.sum())
|
||||
|
||||
auc = _binary_roc_auc(yk, pk)
|
||||
auprc = _average_precision(yk, pk)
|
||||
brier = float(np.mean(
|
||||
(yk.astype(float) - pk.astype(float)) ** 2)) if n_samples > 0 else float("nan")
|
||||
|
||||
cause_id = int(cause_k) if cause_ids is None else int(
|
||||
cfg.cause_ids[cause_k])
|
||||
|
||||
for k_percent in topk_percents:
|
||||
precision_k, recall_k = _precision_recall_at_k_percent(
|
||||
yk, pk, float(k_percent))
|
||||
for p_idx, k_percent in enumerate(topk_percents):
|
||||
rows_by_bin.append(
|
||||
dict(
|
||||
mc_idx=global_mc_idx,
|
||||
@@ -510,12 +414,12 @@ def evaluate_time_dependent_age_bins(
|
||||
topk_percent=float(k_percent),
|
||||
cause_id=cause_id,
|
||||
n_samples=n_samples,
|
||||
n_positives=n_pos,
|
||||
auc=float(auc),
|
||||
auprc=float(auprc),
|
||||
recall_at_K=float(recall_k),
|
||||
precision_at_K=float(precision_k),
|
||||
brier_score=float(brier),
|
||||
n_positives=int(n_pos[cause_k]),
|
||||
auc=float(auc[cause_k]),
|
||||
auprc=float(auprc[cause_k]),
|
||||
recall_at_K=float(rec_at_k[p_idx, cause_k]),
|
||||
precision_at_K=float(prec_at_k[p_idx, cause_k]),
|
||||
brier_score=float(brier[cause_k]),
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
524
torch_metrics.py
Normal file
524
torch_metrics.py
Normal file
@@ -0,0 +1,524 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import math
|
||||
from dataclasses import dataclass
|
||||
from typing import Dict, Iterable, List, Literal, Optional, Sequence, Tuple
|
||||
|
||||
import torch
|
||||
|
||||
|
||||
TieMode = Literal["exact", "approx"]
|
||||
|
||||
|
||||
def _stable_sort(
|
||||
x: torch.Tensor,
|
||||
*,
|
||||
dim: int,
|
||||
descending: bool,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""Stable torch sort when available.
|
||||
|
||||
Determinism notes:
|
||||
- When `stable=True` is supported by the installed PyTorch, we request it.
|
||||
- Otherwise we fall back to `torch.sort`. For identical inputs on the same
|
||||
device/runtime, this is typically deterministic, but tie ordering is not
|
||||
guaranteed to be stable across versions.
|
||||
"""
|
||||
try:
|
||||
return torch.sort(x, dim=dim, descending=descending, stable=True)
|
||||
except TypeError:
|
||||
return torch.sort(x, dim=dim, descending=descending)
|
||||
|
||||
|
||||
def _nanmean(x: torch.Tensor) -> torch.Tensor:
|
||||
mask = torch.isfinite(x)
|
||||
if not bool(mask.any()):
|
||||
return torch.tensor(float("nan"), device=x.device, dtype=x.dtype)
|
||||
return x[mask].mean()
|
||||
|
||||
|
||||
def _nanweighted_mean(x: torch.Tensor, w: torch.Tensor) -> torch.Tensor:
|
||||
x = x.to(torch.float32)
|
||||
w = w.to(torch.float32)
|
||||
mask = torch.isfinite(x) & torch.isfinite(w) & (w > 0)
|
||||
if not bool(mask.any()):
|
||||
return torch.tensor(float("nan"), device=x.device, dtype=torch.float32)
|
||||
ww = w[mask]
|
||||
return (x[mask] * ww).sum() / ww.sum()
|
||||
|
||||
|
||||
def _validate_binary_inputs(y_true: torch.Tensor, y_score: torch.Tensor) -> None:
|
||||
if y_true.ndim != 2 or y_score.ndim != 2:
|
||||
raise ValueError(
|
||||
f"Expected y_true and y_score to be 2D (N,K); got {tuple(y_true.shape)} and {tuple(y_score.shape)}"
|
||||
)
|
||||
if tuple(y_true.shape) != tuple(y_score.shape):
|
||||
raise ValueError(
|
||||
f"Shape mismatch: y_true{tuple(y_true.shape)} vs y_score{tuple(y_score.shape)}"
|
||||
)
|
||||
|
||||
|
||||
def brier_per_cause(y_true: torch.Tensor, y_score: torch.Tensor) -> torch.Tensor:
|
||||
"""Brier score per cause.
|
||||
|
||||
Args:
|
||||
y_true: (N,K) bool/int tensor
|
||||
y_score: (N,K) float tensor
|
||||
|
||||
Returns:
|
||||
(K,) float32 tensor; NaN if N==0.
|
||||
"""
|
||||
_validate_binary_inputs(y_true, y_score)
|
||||
if y_true.numel() == 0:
|
||||
return torch.full((y_true.size(1),), float("nan"), device=y_true.device, dtype=torch.float32)
|
||||
yt = y_true.to(torch.float32)
|
||||
ys = y_score.to(torch.float32)
|
||||
return ((ys - yt) ** 2).mean(dim=0)
|
||||
|
||||
|
||||
def ici_per_cause_fixed_width(
|
||||
y_true: torch.Tensor,
|
||||
y_score: torch.Tensor,
|
||||
*,
|
||||
n_bins: int = 15,
|
||||
chunk_size: int = 128,
|
||||
) -> torch.Tensor:
|
||||
"""Integrated Calibration Index (ICI) via fixed-width bins on [0,1].
|
||||
|
||||
ICI per cause = E[ |p_bin - y_bin| ] where bin stats are computed over
|
||||
fixed-width probability bins.
|
||||
|
||||
This is deterministic and GPU-friendly (scatter_add based).
|
||||
|
||||
Returns:
|
||||
(K,) float32 tensor; NaN when N==0.
|
||||
"""
|
||||
_validate_binary_inputs(y_true, y_score)
|
||||
if int(n_bins) <= 1:
|
||||
raise ValueError("n_bins must be >= 2")
|
||||
|
||||
device = y_true.device
|
||||
N, K = y_true.shape
|
||||
if N == 0:
|
||||
return torch.full((K,), float("nan"), device=device, dtype=torch.float32)
|
||||
|
||||
yt = y_true.to(torch.float32)
|
||||
ys = y_score.to(torch.float32).clamp(0.0, 1.0)
|
||||
|
||||
out = torch.full((K,), float("nan"), device=device, dtype=torch.float32)
|
||||
|
||||
for start in range(0, K, int(chunk_size)):
|
||||
end = min(K, start + int(chunk_size))
|
||||
ys_c = ys[:, start:end]
|
||||
yt_c = yt[:, start:end]
|
||||
|
||||
# bin index in [0, n_bins-1]
|
||||
bin_idx = torch.clamp(
|
||||
(ys_c * float(n_bins)).to(torch.long), max=int(n_bins) - 1)
|
||||
|
||||
counts = torch.zeros((int(n_bins), end - start),
|
||||
device=device, dtype=torch.float32)
|
||||
pred_sums = torch.zeros_like(counts)
|
||||
true_sums = torch.zeros_like(counts)
|
||||
|
||||
ones = torch.ones_like(ys_c, dtype=torch.float32)
|
||||
counts.scatter_add_(0, bin_idx, ones)
|
||||
pred_sums.scatter_add_(0, bin_idx, ys_c)
|
||||
true_sums.scatter_add_(0, bin_idx, yt_c)
|
||||
|
||||
denom = counts.clamp(min=1.0)
|
||||
pred_mean = pred_sums / denom
|
||||
true_mean = true_sums / denom
|
||||
|
||||
abs_gap = (pred_mean - true_mean).abs()
|
||||
# sample-weighted average of bin gap
|
||||
total = counts.sum(dim=0).clamp(min=1.0)
|
||||
ici = (abs_gap * counts).sum(dim=0) / total
|
||||
|
||||
# If a cause has no samples (shouldn't happen when N>0), mark NaN.
|
||||
out[start:end] = torch.where(
|
||||
total > 0, ici.to(torch.float32), out[start:end])
|
||||
|
||||
return out
|
||||
|
||||
|
||||
def average_precision_per_cause(
|
||||
y_true: torch.Tensor,
|
||||
y_score: torch.Tensor,
|
||||
*,
|
||||
tie_mode: TieMode = "exact",
|
||||
chunk_size: int = 128,
|
||||
) -> torch.Tensor:
|
||||
"""Average precision (AP) per cause.
|
||||
|
||||
Definition matches sklearn's `average_precision_score` (step-wise PR integral):
|
||||
AP = \\sum_i (R_i - R_{i-1}) * P_i
|
||||
where i iterates over unique score thresholds.
|
||||
|
||||
tie_mode:
|
||||
- "exact": tie-invariant AP by grouping identical scores (recommended)
|
||||
- "approx": mean precision at positive ranks; can differ under ties
|
||||
|
||||
Returns:
|
||||
(K,) float32 tensor with NaN for causes with 0 positives.
|
||||
"""
|
||||
_validate_binary_inputs(y_true, y_score)
|
||||
|
||||
device = y_true.device
|
||||
N, K = y_true.shape
|
||||
if N == 0:
|
||||
return torch.full((K,), float("nan"), device=device, dtype=torch.float32)
|
||||
|
||||
yt = y_true.to(torch.bool)
|
||||
ys = y_score.to(torch.float32)
|
||||
|
||||
n_pos_all = yt.sum(dim=0).to(torch.float32)
|
||||
out = torch.full((K,), float("nan"), device=device, dtype=torch.float32)
|
||||
|
||||
for start in range(0, K, int(chunk_size)):
|
||||
end = min(K, start + int(chunk_size))
|
||||
yt_c = yt[:, start:end]
|
||||
ys_c = ys[:, start:end]
|
||||
|
||||
# For exact mode we need per-cause tie grouping; do per-cause loops
|
||||
# within a chunk to keep memory bounded and stay on GPU.
|
||||
for j in range(end - start):
|
||||
n_pos = n_pos_all[start + j]
|
||||
|
||||
scores = ys_c[:, j]
|
||||
labels = yt_c[:, j]
|
||||
|
||||
if tie_mode == "approx":
|
||||
_, order = _stable_sort(scores, dim=0, descending=True)
|
||||
y_sorted = labels.gather(0, order).to(torch.float32)
|
||||
tp = y_sorted.cumsum(dim=0)
|
||||
denom = torch.arange(
|
||||
1, N + 1, device=device, dtype=torch.float32)
|
||||
precision = tp / denom
|
||||
n_pos_safe = torch.clamp(n_pos, min=1.0)
|
||||
ap = (precision * y_sorted).sum() / n_pos_safe
|
||||
out[start + j] = torch.where(n_pos > 0.0,
|
||||
ap.to(torch.float32), out[start + j])
|
||||
continue
|
||||
|
||||
# exact: group by unique score thresholds
|
||||
sorted_scores, order = _stable_sort(scores, dim=0, descending=True)
|
||||
y_sorted = labels.gather(0, order).to(torch.float32)
|
||||
|
||||
# group boundaries where score changes
|
||||
change = torch.empty((N,), device=device, dtype=torch.bool)
|
||||
change[0] = True
|
||||
if N > 1:
|
||||
change[1:] = sorted_scores[1:] != sorted_scores[:-1]
|
||||
group_starts = change.nonzero(as_tuple=False).squeeze(1)
|
||||
group_ends = torch.cat(
|
||||
[group_starts[1:], torch.tensor(
|
||||
[N], device=device, dtype=group_starts.dtype)]
|
||||
) - 1
|
||||
|
||||
tp = y_sorted.cumsum(dim=0)
|
||||
fp = torch.arange(1, N + 1, device=device, dtype=torch.float32) - tp
|
||||
|
||||
tp_end = tp[group_ends]
|
||||
fp_end = fp[group_ends]
|
||||
precision = tp_end / torch.clamp(tp_end + fp_end, min=1.0)
|
||||
n_pos_safe = torch.clamp(n_pos, min=1.0)
|
||||
recall = tp_end / n_pos_safe
|
||||
|
||||
recall_prev = torch.cat(
|
||||
[torch.zeros((1,), device=device,
|
||||
dtype=torch.float32), recall[:-1]]
|
||||
)
|
||||
ap = ((recall - recall_prev) * precision).sum()
|
||||
out[start + j] = torch.where(n_pos > 0.0,
|
||||
ap.to(torch.float32), out[start + j])
|
||||
|
||||
return out
|
||||
|
||||
|
||||
def auroc_per_cause(
|
||||
y_true: torch.Tensor,
|
||||
y_score: torch.Tensor,
|
||||
*,
|
||||
tie_mode: TieMode = "exact",
|
||||
chunk_size: int = 128,
|
||||
) -> torch.Tensor:
|
||||
"""AUROC per cause via Mann–Whitney U.
|
||||
|
||||
AUC = (sum_ranks_pos - n_pos*(n_pos+1)/2) / (n_pos*n_neg)
|
||||
|
||||
tie_mode:
|
||||
- "exact": average ranks for ties (matches typical sklearn tie behavior)
|
||||
- "approx": ordinal ranks (faster, differs under ties)
|
||||
|
||||
Returns:
|
||||
(K,) float32 tensor; NaN when a cause has n_pos==0 or n_neg==0.
|
||||
"""
|
||||
_validate_binary_inputs(y_true, y_score)
|
||||
|
||||
device = y_true.device
|
||||
N, K = y_true.shape
|
||||
if N == 0:
|
||||
return torch.full((K,), float("nan"), device=device, dtype=torch.float32)
|
||||
|
||||
yt = y_true.to(torch.bool)
|
||||
ys = y_score.to(torch.float32)
|
||||
|
||||
n_pos_all = yt.sum(dim=0).to(torch.float32)
|
||||
n_neg_all = (float(N) - n_pos_all).to(torch.float32)
|
||||
|
||||
out = torch.full((K,), float("nan"), device=device, dtype=torch.float32)
|
||||
|
||||
for start in range(0, K, int(chunk_size)):
|
||||
end = min(K, start + int(chunk_size))
|
||||
yt_c = yt[:, start:end]
|
||||
ys_c = ys[:, start:end]
|
||||
|
||||
for j in range(end - start):
|
||||
n_pos = n_pos_all[start + j]
|
||||
n_neg = n_neg_all[start + j]
|
||||
|
||||
scores = ys_c[:, j]
|
||||
labels = yt_c[:, j]
|
||||
|
||||
sorted_scores, order = _stable_sort(scores, dim=0, descending=False)
|
||||
y_sorted = labels.gather(0, order).to(torch.float32)
|
||||
|
||||
if tie_mode == "approx":
|
||||
ranks = torch.arange(
|
||||
1, N + 1, device=device, dtype=torch.float32)
|
||||
else:
|
||||
# average ranks for ties
|
||||
change = torch.empty((N,), device=device, dtype=torch.bool)
|
||||
change[0] = True
|
||||
if N > 1:
|
||||
change[1:] = sorted_scores[1:] != sorted_scores[:-1]
|
||||
group_starts = change.nonzero(as_tuple=False).squeeze(1)
|
||||
group_ends = torch.cat(
|
||||
[group_starts[1:], torch.tensor(
|
||||
[N], device=device, dtype=group_starts.dtype)]
|
||||
) - 1
|
||||
|
||||
lengths = (group_ends - group_starts + 1).to(torch.long)
|
||||
start_rank = (group_starts + 1).to(torch.float32)
|
||||
end_rank = (group_ends + 1).to(torch.float32)
|
||||
avg_rank = 0.5 * (start_rank + end_rank)
|
||||
ranks = avg_rank.repeat_interleave(lengths)
|
||||
|
||||
sum_ranks_pos = (ranks * y_sorted).sum()
|
||||
u = sum_ranks_pos - (n_pos * (n_pos + 1.0) / 2.0)
|
||||
denom = n_pos * n_neg
|
||||
auc = u / torch.clamp(denom, min=1.0)
|
||||
valid = (n_pos > 0.0) & (n_neg > 0.0)
|
||||
out[start + j] = torch.where(valid,
|
||||
auc.to(torch.float32), out[start + j])
|
||||
|
||||
return out
|
||||
|
||||
|
||||
def precision_recall_at_k_percents_per_cause(
|
||||
y_true: torch.Tensor,
|
||||
y_score: torch.Tensor,
|
||||
k_percents: Sequence[float],
|
||||
*,
|
||||
chunk_size: int = 128,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""Precision@K% and Recall@K% per cause.
|
||||
|
||||
Uses stable sort (descending) to match deterministic tie behavior.
|
||||
|
||||
Returns:
|
||||
precision: (P,K) float32
|
||||
recall: (P,K) float32
|
||||
"""
|
||||
_validate_binary_inputs(y_true, y_score)
|
||||
|
||||
device = y_true.device
|
||||
N, K = y_true.shape
|
||||
P = int(len(k_percents))
|
||||
|
||||
precision = torch.full((P, K), float(
|
||||
"nan"), device=device, dtype=torch.float32)
|
||||
recall = torch.full((P, K), float(
|
||||
"nan"), device=device, dtype=torch.float32)
|
||||
|
||||
if N == 0:
|
||||
return precision, recall
|
||||
|
||||
yt = y_true.to(torch.bool)
|
||||
ys = y_score.to(torch.float32)
|
||||
|
||||
n_pos_all = yt.sum(dim=0).to(torch.float32)
|
||||
|
||||
ks: List[int] = []
|
||||
for kp in k_percents:
|
||||
k = int(math.ceil((float(kp) / 100.0) * float(N)))
|
||||
ks.append(k)
|
||||
|
||||
for start in range(0, K, int(chunk_size)):
|
||||
end = min(K, start + int(chunk_size))
|
||||
yt_c = yt[:, start:end]
|
||||
ys_c = ys[:, start:end]
|
||||
|
||||
for j in range(end - start):
|
||||
scores = ys_c[:, j]
|
||||
labels = yt_c[:, j]
|
||||
n_pos = n_pos_all[start + j]
|
||||
|
||||
# stable descending order
|
||||
_, order = _stable_sort(scores, dim=0, descending=True)
|
||||
y_sorted = labels.gather(0, order).to(torch.float32)
|
||||
tp = y_sorted.cumsum(dim=0)
|
||||
|
||||
for p_idx, k in enumerate(ks):
|
||||
if k <= 0:
|
||||
continue
|
||||
tp_k = tp[min(k, N) - 1]
|
||||
precision[p_idx, start + j] = tp_k / float(k)
|
||||
recall[p_idx, start + j] = torch.where(
|
||||
n_pos > 0.0,
|
||||
tp_k / n_pos,
|
||||
torch.tensor(float("nan"), device=device,
|
||||
dtype=torch.float32),
|
||||
)
|
||||
|
||||
return precision, recall
|
||||
|
||||
|
||||
@dataclass
|
||||
class BinaryMetricsResult:
|
||||
auc_per_cause: torch.Tensor # (K,)
|
||||
ap_per_cause: torch.Tensor # (K,)
|
||||
brier_per_cause: torch.Tensor # (K,)
|
||||
precision_at_k: torch.Tensor # (P,K)
|
||||
recall_at_k: torch.Tensor # (P,K)
|
||||
n_pos_per_cause: torch.Tensor # (K,)
|
||||
n_neg_per_cause: torch.Tensor # (K,)
|
||||
ici_per_cause: Optional[torch.Tensor] = None # (K,)
|
||||
|
||||
|
||||
@torch.inference_mode()
|
||||
def compute_binary_metrics_torch(
|
||||
y_true: torch.Tensor,
|
||||
y_pred: torch.Tensor,
|
||||
*,
|
||||
device: str | torch.device | None = None,
|
||||
k_percents: Sequence[float] = (1.0, 5.0, 10.0, 20.0, 50.0),
|
||||
tie_mode: TieMode = "exact",
|
||||
chunk_size: int = 128,
|
||||
compute_ici: bool = False,
|
||||
ici_bins: int = 15,
|
||||
) -> BinaryMetricsResult:
|
||||
"""Compute per-cause binary ranking metrics on GPU using torch.
|
||||
|
||||
Inputs must be (N,K) and live on the device you want to compute on.
|
||||
|
||||
Performance notes:
|
||||
- Computation is chunked over causes to bound peak memory.
|
||||
- For `tie_mode="exact"`, AP and AUROC are computed with tie grouping, which
|
||||
is more correct under ties but uses per-cause loops (still GPU-resident).
|
||||
|
||||
Determinism:
|
||||
- Uses stable sorts where available.
|
||||
- Avoids nondeterministic selection ops for ties (no `topk`).
|
||||
"""
|
||||
_validate_binary_inputs(y_true, y_pred)
|
||||
|
||||
if device is not None:
|
||||
device = torch.device(device)
|
||||
y_true = y_true.to(device)
|
||||
y_pred = y_pred.to(device)
|
||||
|
||||
N, K = y_true.shape
|
||||
|
||||
yt = y_true.to(torch.bool)
|
||||
yp = y_pred.to(torch.float32)
|
||||
|
||||
n_pos = yt.sum(dim=0).to(torch.long)
|
||||
n_neg = (int(N) - n_pos).to(torch.long)
|
||||
|
||||
auc = auroc_per_cause(yt, yp, tie_mode=tie_mode, chunk_size=chunk_size)
|
||||
ap = average_precision_per_cause(
|
||||
yt, yp, tie_mode=tie_mode, chunk_size=chunk_size)
|
||||
brier = brier_per_cause(yt, yp)
|
||||
|
||||
prec_k, rec_k = precision_recall_at_k_percents_per_cause(
|
||||
yt, yp, k_percents, chunk_size=chunk_size
|
||||
)
|
||||
|
||||
ici = None
|
||||
if compute_ici:
|
||||
ici = ici_per_cause_fixed_width(
|
||||
yt, yp, n_bins=int(ici_bins), chunk_size=chunk_size)
|
||||
|
||||
return BinaryMetricsResult(
|
||||
auc_per_cause=auc,
|
||||
ap_per_cause=ap,
|
||||
brier_per_cause=brier,
|
||||
precision_at_k=prec_k,
|
||||
recall_at_k=rec_k,
|
||||
n_pos_per_cause=n_pos,
|
||||
n_neg_per_cause=n_neg,
|
||||
ici_per_cause=ici,
|
||||
)
|
||||
|
||||
|
||||
@torch.inference_mode()
|
||||
def compute_metrics_torch(
|
||||
y_true: torch.Tensor,
|
||||
y_pred: torch.Tensor,
|
||||
*,
|
||||
device: str | torch.device | None = None,
|
||||
weights: Optional[torch.Tensor] = None,
|
||||
k_percents: Sequence[float] = (1.0, 5.0, 10.0, 20.0, 50.0),
|
||||
tie_mode: TieMode = "exact",
|
||||
chunk_size: int = 128,
|
||||
compute_ici: bool = False,
|
||||
ici_bins: int = 15,
|
||||
) -> Dict[str, object]:
|
||||
"""Convenience API: per-cause + macro/weighted aggregations.
|
||||
|
||||
Returns a dict compatible with downstream reporting:
|
||||
- per-cause tensors under `per_cause`
|
||||
- macro + weighted summaries (NaN-aware)
|
||||
|
||||
If `weights` is None, uses number of positives per cause as weights.
|
||||
"""
|
||||
res = compute_binary_metrics_torch(
|
||||
y_true,
|
||||
y_pred,
|
||||
device=device,
|
||||
k_percents=k_percents,
|
||||
tie_mode=tie_mode,
|
||||
chunk_size=chunk_size,
|
||||
compute_ici=compute_ici,
|
||||
ici_bins=ici_bins,
|
||||
)
|
||||
|
||||
w = res.n_pos_per_cause.to(
|
||||
torch.float32) if weights is None else weights.to(torch.float32)
|
||||
|
||||
out: Dict[str, object] = {
|
||||
"auc_macro": _nanmean(res.auc_per_cause),
|
||||
"auc_weighted": _nanweighted_mean(res.auc_per_cause, w),
|
||||
"ap_macro": _nanmean(res.ap_per_cause),
|
||||
"ap_weighted": _nanweighted_mean(res.ap_per_cause, w),
|
||||
"brier_macro": _nanmean(res.brier_per_cause),
|
||||
"brier_weighted": _nanweighted_mean(res.brier_per_cause, w),
|
||||
"per_cause": {
|
||||
"auc": res.auc_per_cause,
|
||||
"ap": res.ap_per_cause,
|
||||
"brier": res.brier_per_cause,
|
||||
"precision_at_k": res.precision_at_k,
|
||||
"recall_at_k": res.recall_at_k,
|
||||
"n_pos": res.n_pos_per_cause,
|
||||
"n_neg": res.n_neg_per_cause,
|
||||
},
|
||||
}
|
||||
|
||||
if res.ici_per_cause is not None:
|
||||
out["ici_macro"] = _nanmean(res.ici_per_cause)
|
||||
out["ici_weighted"] = _nanweighted_mean(res.ici_per_cause, w)
|
||||
out["per_cause"]["ici"] = res.ici_per_cause
|
||||
|
||||
return out
|
||||
Reference in New Issue
Block a user