Add loss functions and model architecture for time-to-event prediction

- Implemented ExponentialNLLLoss and WeibullNLLLoss in losses.py for negative log-likelihood calculations.
- Developed TabularEncoder class in model.py for encoding tabular features.
- Created DelphiFork and SapDelphi classes in model.py for time-to-event prediction using transformer architecture.
- Added data preparation scripts in prepare_data.R and prepare_data.py for processing UK Biobank data, including handling field mappings and event data extraction.
This commit is contained in:
2026-01-07 21:32:00 +08:00
parent 5d1d79b908
commit 6984b254b3
12 changed files with 5098 additions and 0 deletions

101
dataset.py Normal file
View File

@@ -0,0 +1,101 @@
import torch
from torch.utils.data import Dataset
from torch.nn.utils.rnn import pad_sequence
import pandas as pd
import numpy as np
from collections import defaultdict
from typing import List
class HealthDataset(Dataset):
"""
Dataset for health records.
Args:
data_prefix (str): Prefix for data files.
covariate_list (List[str] | None): List of covariates to include.
"""
def __init__(
self,
data_prefix: str,
covariate_list: List[str] | None = None,
):
basic_info = pd.read_csv(
f"{data_prefix}_basic_info.csv", index_col='eid')
tabular_data = pd.read_csv(f"{data_prefix}_table.csv", index_col='eid')
event_data = np.load(f"{data_prefix}_event_data.npy")
patient_events = defaultdict(list)
vocab_size = 0
for patient_id, time_in_days, event_code in event_data:
patient_events[patient_id].append((time_in_days, event_code))
if event_code > vocab_size:
vocab_size = event_code
self.n_disease = vocab_size - 1
self.basic_info = basic_info.convert_dtypes()
self.patient_ids = self.basic_info.index.tolist()
self.patient_events = dict(patient_events)
tabular_data = tabular_data.convert_dtypes()
cont_cols = []
cate_cols = []
self.cate_dims = []
if covariate_list is not None:
tabular_data = tabular_data[covariate_list]
for col in tabular_data.columns:
if pd.api.types.is_float_dtype(tabular_data[col]):
cont_cols.append(col)
elif pd.api.types.is_integer_dtype(tabular_data[col]):
series = tabular_data[col]
unique_vals = series.dropna().unique()
if len(unique_vals) > 11:
cont_cols.append(col)
else:
cate_cols.append(col)
self.cate_dims.append(int(series.max()) + 1)
self.cont_features = tabular_data[cont_cols].to_numpy(
dtype=np.float32).copy()
self.cate_features = tabular_data[cate_cols].to_numpy(
dtype=np.int64).copy()
self.n_cont = self.cont_features.shape[1]
self.n_cate = self.cate_features.shape[1]
def __len__(self) -> int:
return len(self.patient_ids)
def __getitem__(self, idx):
patient_id = self.patient_ids[idx]
records = sorted(self.patient_events.get(
patient_id, []), key=lambda x: x[0])
event_seq = [item[1] for item in records]
time_seq = [item[0] for item in records]
doa = self.basic_info.loc[patient_id, 'date_of_assessment']
insert_pos = np.searchsorted(time_seq, doa)
time_seq.insert(insert_pos, doa)
# assuming 1 is the code for 'DOA' event
event_seq.insert(insert_pos, 1)
event_tensor = torch.tensor(event_seq, dtype=torch.long)
time_tensor = torch.tensor(time_seq, dtype=torch.float)
cont_tensor = torch.tensor(
self.cont_features[idx, :], dtype=torch.float)
cate_tensor = torch.tensor(
self.cate_features[idx, :], dtype=torch.long)
sex = self.basic_info.loc[patient_id, 'sex']
return (event_tensor, time_tensor, cont_tensor, cate_tensor, sex)
def health_collate_fn(batch):
event_seqs, time_seqs, cont_feats, cate_feats, sexes = zip(*batch)
event_batch = pad_sequence(event_seqs, batch_first=True, padding_value=0)
time_batch = pad_sequence(
time_seqs, batch_first=True, padding_value=36525.0)
cont_batch = torch.stack(cont_feats, dim=0)
cont_batch = cont_batch.unsqueeze(1) # (B, 1, n_cont)
cate_batch = torch.stack(cate_feats, dim=0)
cate_batch = cate_batch.unsqueeze(1) # (B, 1, n_cate)
sex_batch = torch.tensor(sexes, dtype=torch.long)
return event_batch, time_batch, cont_batch, cate_batch, sex_batch