Add loss functions and model architecture for time-to-event prediction
- Implemented ExponentialNLLLoss and WeibullNLLLoss in losses.py for negative log-likelihood calculations. - Developed TabularEncoder class in model.py for encoding tabular features. - Created DelphiFork and SapDelphi classes in model.py for time-to-event prediction using transformer architecture. - Added data preparation scripts in prepare_data.R and prepare_data.py for processing UK Biobank data, including handling field mappings and event data extraction.
This commit is contained in:
111
backbones.py
Normal file
111
backbones.py
Normal file
@@ -0,0 +1,111 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from typing import Optional
|
||||
|
||||
|
||||
class SelfAttention(nn.Module):
|
||||
"""
|
||||
Multi-head self-attention mechanism.
|
||||
|
||||
Args:
|
||||
n_embd (int): Embedding dimension.
|
||||
n_head (int): Number of attention heads.
|
||||
attn_pdrop (float): Attention dropout probability.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
n_embd: int,
|
||||
n_head: int,
|
||||
attn_pdrop: float = 0.1,
|
||||
):
|
||||
super().__init__()
|
||||
assert n_embd % n_head == 0, "n_embd must be divisible by n_head"
|
||||
self.n_head = n_head
|
||||
self.head_dim = n_embd // n_head
|
||||
|
||||
self.qkv_proj = nn.Linear(n_embd, 3 * n_embd, bias=False)
|
||||
self.o_proj = nn.Linear(n_embd, n_embd, bias=False)
|
||||
self.attn_pdrop = attn_pdrop
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
attn_mask: Optional[torch.Tensor] = None, # (B, L, L)
|
||||
) -> torch.Tensor:
|
||||
B, L, D = x.shape
|
||||
qkv = self.qkv_proj(x) # (B, L, 3D)
|
||||
q, k, v = qkv.chunk(3, dim=-1)
|
||||
|
||||
def reshape_heads(t):
|
||||
# (B, H, L, d)
|
||||
return t.view(B, L, self.n_head, self.head_dim).transpose(1, 2)
|
||||
|
||||
q = reshape_heads(q)
|
||||
k = reshape_heads(k)
|
||||
v = reshape_heads(v)
|
||||
|
||||
attn = F.scaled_dot_product_attention(
|
||||
q, k, v,
|
||||
attn_mask=attn_mask,
|
||||
dropout_p=self.attn_pdrop,
|
||||
) # (B, H, L, d)
|
||||
|
||||
attn = attn.transpose(1, 2).contiguous().view(B, L, D) # (B, L, D)
|
||||
return self.o_proj(attn)
|
||||
|
||||
|
||||
class Block(nn.Module):
|
||||
"""
|
||||
Transformer block consisting of self-attention and MLP.
|
||||
|
||||
Args:
|
||||
n_embd (int): Embedding dimension.
|
||||
n_head (int): Number of attention heads.
|
||||
pdrop (float): Dropout probability.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
n_embd: int,
|
||||
n_head: int,
|
||||
pdrop: float = 0.0,
|
||||
):
|
||||
super().__init__()
|
||||
attn_pdrop = pdrop
|
||||
|
||||
self.norm_1 = nn.LayerNorm(n_embd)
|
||||
self.attn = SelfAttention(
|
||||
n_embd=n_embd,
|
||||
n_head=n_head,
|
||||
attn_pdrop=attn_pdrop,
|
||||
)
|
||||
self.norm_2 = nn.LayerNorm(n_embd)
|
||||
self.mlp = nn.ModuleDict(dict(
|
||||
c_fc=nn.Linear(n_embd, 4 * n_embd),
|
||||
c_proj=nn.Linear(4 * n_embd, n_embd),
|
||||
act=nn.GELU(),
|
||||
dropout=nn.Dropout(pdrop),
|
||||
))
|
||||
m = self.mlp
|
||||
self.mlpf = lambda x: m.dropout(
|
||||
m.c_proj(m.act(m.c_fc(x))))
|
||||
self.resid_dropout = nn.Dropout(pdrop)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
attn_mask: Optional[torch.Tensor] = None,
|
||||
) -> torch.Tensor:
|
||||
# Attention
|
||||
h = self.norm_1(x)
|
||||
h = self.attn(h, attn_mask=attn_mask)
|
||||
x = x + self.resid_dropout(h)
|
||||
|
||||
# MLP
|
||||
h = self.norm_2(x)
|
||||
h = self.mlpf(h)
|
||||
x = x + self.resid_dropout(h)
|
||||
|
||||
return x
|
||||
Reference in New Issue
Block a user