Add evaluation and utility functions for time-dependent metrics

- Introduced `evaluate.py` for time-dependent evaluation of models, including data loading and model inference.
- Added `evaluation_time_dependent.py` to compute various evaluation metrics such as AUC, average precision, and precision/recall at specified thresholds.
- Implemented CIF calculation methods in `losses.py` for different loss types, including exponential and piecewise exponential models.
- Created utility functions in `utils.py` for context selection and multi-hot encoding of events within specified horizons.
This commit is contained in:
2026-01-16 14:55:09 +08:00
parent 660dc969bc
commit 34d8d8ce9d
4 changed files with 1066 additions and 0 deletions

234
evaluate.py Normal file
View File

@@ -0,0 +1,234 @@
from __future__ import annotations
import argparse
import json
import math
import os
from typing import List, Sequence
import torch
from torch.utils.data import DataLoader, random_split
from dataset import HealthDataset, health_collate_fn
from evaluation_time_dependent import EvalConfig, evaluate_time_dependent
from losses import DiscreteTimeCIFNLLLoss, ExponentialNLLLoss, PiecewiseExponentialCIFNLLLoss
from model import DelphiFork, SapDelphi, SimpleHead
def _parse_floats(items: Sequence[str]) -> List[float]:
out: List[float] = []
for x in items:
x = x.strip()
if not x:
continue
out.append(float(x))
return out
def build_criterion_and_out_dims(loss_type: str, n_disease: int, bin_edges, lambda_reg: float):
if loss_type == "exponential":
criterion = ExponentialNLLLoss(lambda_reg=lambda_reg)
out_dims = [n_disease]
return criterion, out_dims
if loss_type == "discrete_time_cif":
criterion = DiscreteTimeCIFNLLLoss(
bin_edges=bin_edges, lambda_reg=lambda_reg)
out_dims = [n_disease + 1, len(bin_edges)]
return criterion, out_dims
if loss_type == "pwe_cif":
pwe_edges = [float(x) for x in bin_edges if math.isfinite(float(x))]
if len(pwe_edges) < 2:
raise ValueError(
"pwe_cif requires at least 2 finite bin edges (including 0)")
if float(pwe_edges[0]) != 0.0:
raise ValueError("pwe_cif requires bin_edges[0]==0.0")
criterion = PiecewiseExponentialCIFNLLLoss(
bin_edges=pwe_edges, lambda_reg=lambda_reg)
n_bins = len(pwe_edges) - 1
out_dims = [n_disease, n_bins]
return criterion, out_dims
raise ValueError(f"Unsupported loss_type: {loss_type}")
def build_model(model_type: str, *, dataset: HealthDataset, cfg: dict):
if model_type == "delphi_fork":
return DelphiFork(
n_disease=dataset.n_disease,
n_tech_tokens=2,
n_embd=int(cfg["n_embd"]),
n_head=int(cfg["n_head"]),
n_layer=int(cfg["n_layer"]),
pdrop=float(cfg.get("pdrop", 0.0)),
age_encoder_type=str(cfg["age_encoder"]),
n_cont=int(dataset.n_cont),
n_cate=int(dataset.n_cate),
cate_dims=list(dataset.cate_dims),
)
if model_type == "sap_delphi":
return SapDelphi(
n_disease=dataset.n_disease,
n_tech_tokens=2,
n_embd=int(cfg["n_embd"]),
n_head=int(cfg["n_head"]),
n_layer=int(cfg["n_layer"]),
pdrop=float(cfg.get("pdrop", 0.0)),
age_encoder_type=str(cfg["age_encoder"]),
n_cont=int(dataset.n_cont),
n_cate=int(dataset.n_cate),
cate_dims=list(dataset.cate_dims),
pretrained_weights_path=str(
cfg.get("pretrained_emd_path", "icd10_sapbert_embeddings.npy")),
freeze_embeddings=bool(cfg.get("freeze_embeddings", True)),
)
raise ValueError(f"Unsupported model_type: {model_type}")
def main() -> None:
parser = argparse.ArgumentParser(
description="Time-dependent evaluation for DeepHealth")
parser.add_argument(
"--run_dir",
type=str,
required=True,
help="Training run directory (contains best_model.pt and train_config.json)",
)
parser.add_argument("--data_prefix", type=str, default=None,
help="Dataset prefix (overrides config if provided)")
parser.add_argument("--split", type=str,
choices=["train", "val", "test", "all"], default="val")
parser.add_argument("--horizons", type=str, nargs="+",
default=["0.25", "0.5", "1.0", "2.0", "5.0", "10.0"], help="One or more horizons (years)")
parser.add_argument("--offset_years", type=float, default=0.0,
help="Context selection offset (years before follow-up end)")
parser.add_argument(
"--topk_percent",
type=float,
nargs="+",
default=[1, 5, 10, 20, 50],
help="One or more K%% values for recall/precision@K%% (e.g., --topk_percent 1 5 10)",
)
parser.add_argument("--device", type=str,
default="cuda" if torch.cuda.is_available() else "cpu")
parser.add_argument("--batch_size", type=int, default=256)
parser.add_argument("--num_workers", type=int,
default=0, help="Keep 0 on Windows")
parser.add_argument("--out_csv", type=str, default=None,
help="Optional output CSV path")
args = parser.parse_args()
ckpt_path = os.path.join(args.run_dir, "best_model.pt")
cfg_path = os.path.join(args.run_dir, "train_config.json")
if not os.path.exists(ckpt_path):
raise SystemExit(f"Missing checkpoint: {ckpt_path}")
if not os.path.exists(cfg_path):
raise SystemExit(f"Missing config: {cfg_path}")
with open(cfg_path, "r") as f:
cfg = json.load(f)
data_prefix = args.data_prefix if args.data_prefix is not None else cfg.get(
"data_prefix", "ukb")
# Match training covariate selection.
full_cov = bool(cfg.get("full_cov", False))
cov_list = None if full_cov else ["bmi", "smoking", "alcohol"]
dataset = HealthDataset(data_prefix=data_prefix, covariate_list=cov_list)
# Recreate the same split scheme as train.py
train_ratio = float(cfg.get("train_ratio", 0.7))
val_ratio = float(cfg.get("val_ratio", 0.15))
seed = int(cfg.get("random_seed", 42))
n_total = len(dataset)
n_train = int(n_total * train_ratio)
n_val = int(n_total * val_ratio)
n_test = n_total - n_train - n_val
train_ds, val_ds, test_ds = random_split(
dataset,
[n_train, n_val, n_test],
generator=torch.Generator().manual_seed(seed),
)
if args.split == "train":
ds = train_ds
elif args.split == "val":
ds = val_ds
elif args.split == "test":
ds = test_ds
else:
ds = dataset
loader = DataLoader(
ds,
batch_size=int(args.batch_size),
shuffle=False,
collate_fn=health_collate_fn,
num_workers=int(args.num_workers),
pin_memory=str(args.device).startswith("cuda"),
)
criterion, out_dims = build_criterion_and_out_dims(
loss_type=str(cfg["loss_type"]),
n_disease=int(dataset.n_disease),
bin_edges=cfg.get("bin_edges", [0.0, 1.0, float("inf")]),
lambda_reg=float(cfg.get("lambda_reg", 0.0)),
)
model = build_model(str(cfg["model_type"]), dataset=dataset, cfg=cfg)
head = SimpleHead(n_embd=int(cfg["n_embd"]), out_dims=out_dims)
device = torch.device(args.device)
checkpoint = torch.load(ckpt_path, map_location=device)
model.load_state_dict(checkpoint["model_state_dict"], strict=True)
head.load_state_dict(checkpoint["head_state_dict"], strict=True)
if "criterion_state_dict" in checkpoint:
try:
criterion.load_state_dict(
checkpoint["criterion_state_dict"], strict=False)
except Exception:
pass
model.to(device)
head.to(device)
criterion.to(device)
eval_cfg = EvalConfig(
horizons_years=_parse_floats(args.horizons),
offset_years=float(args.offset_years),
topk_percents=[float(x) for x in args.topk_percent],
cause_ids=None,
)
df = evaluate_time_dependent(
model=model,
head=head,
criterion=criterion,
dataloader=loader,
n_disease=int(dataset.n_disease),
cfg=eval_cfg,
device=device,
)
if args.out_csv is None:
out_csv = os.path.join(
args.run_dir, f"time_dependent_metrics_{args.split}.csv")
else:
out_csv = args.out_csv
df.to_csv(out_csv, index=False)
print(f"Wrote: {out_csv}")
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,316 @@
from __future__ import annotations
import math
from dataclasses import dataclass
from typing import Dict, List, Optional, Sequence, Tuple
import numpy as np
import pandas as pd
import torch
from utils import (
DAYS_PER_YEAR,
multi_hot_ever_within_horizon,
multi_hot_selected_causes_within_horizon,
select_context_indices,
)
def _binary_roc_auc(y_true: np.ndarray, y_score: np.ndarray) -> float:
"""Compute ROC AUC for binary labels with tie-aware ranking.
Returns NaN if y_true has no positives or no negatives.
Uses the MannWhitney U statistic with average ranks for ties.
"""
y_true = np.asarray(y_true).astype(bool)
y_score = np.asarray(y_score).astype(float)
n = y_true.size
if n == 0:
return float("nan")
n_pos = int(y_true.sum())
n_neg = n - n_pos
if n_pos == 0 or n_neg == 0:
return float("nan")
# Rank scores ascending, average ranks for ties.
order = np.argsort(y_score, kind="mergesort")
sorted_scores = y_score[order]
ranks = np.empty(n, dtype=float)
i = 0
# 1-based ranks
while i < n:
j = i + 1
while j < n and sorted_scores[j] == sorted_scores[i]:
j += 1
avg_rank = 0.5 * ((i + 1) + j) # ranks i+1 .. j
ranks[order[i:j]] = avg_rank
i = j
sum_ranks_pos = float(ranks[y_true].sum())
u = sum_ranks_pos - (n_pos * (n_pos + 1) / 2.0)
return float(u / (n_pos * n_neg))
def _average_precision(y_true: np.ndarray, y_score: np.ndarray) -> float:
"""Average precision (area under PR curve using step-wise interpolation).
Returns NaN if no positives.
"""
y_true = np.asarray(y_true).astype(bool)
y_score = np.asarray(y_score).astype(float)
n = y_true.size
if n == 0:
return float("nan")
n_pos = int(y_true.sum())
if n_pos == 0:
return float("nan")
order = np.argsort(-y_score, kind="mergesort")
y = y_true[order]
tp = np.cumsum(y).astype(float)
fp = np.cumsum(~y).astype(float)
precision = tp / np.maximum(tp + fp, 1.0)
recall = tp / n_pos
# AP = sum over each positive of precision at that point / n_pos
# (equivalent to ∑ Δrecall * precision)
ap = float(np.sum(precision[y]) / n_pos)
# handle potential tiny numerical overshoots
return float(max(0.0, min(1.0, ap)))
def _precision_recall_at_k_percent(
y_true: np.ndarray,
y_score: np.ndarray,
k_percent: float,
) -> Tuple[float, float]:
"""Precision@K% and Recall@K% for binary labels.
Returns (precision, recall). Returns NaN for recall if no positives.
Returns NaN for precision if k leads to 0 selected.
"""
y_true = np.asarray(y_true).astype(bool)
y_score = np.asarray(y_score).astype(float)
n = y_true.size
if n == 0:
return float("nan"), float("nan")
n_pos = int(y_true.sum())
k = int(math.ceil((float(k_percent) / 100.0) * n))
if k <= 0:
return float("nan"), float("nan")
order = np.argsort(-y_score, kind="mergesort")
top = order[:k]
tp_top = int(y_true[top].sum())
precision = tp_top / k
recall = float("nan") if n_pos == 0 else (tp_top / n_pos)
return float(precision), float(recall)
@dataclass
class EvalConfig:
horizons_years: Sequence[float]
offset_years: float = 0.0
topk_percents: Sequence[float] = (1.0, 5.0, 10.0, 20.0, 50.0)
cause_ids: Optional[Sequence[int]] = None
@torch.no_grad()
def evaluate_time_dependent(
model: torch.nn.Module,
head: torch.nn.Module,
criterion,
dataloader: torch.utils.data.DataLoader,
n_disease: int,
cfg: EvalConfig,
device: str | torch.device,
) -> pd.DataFrame:
"""Evaluate time-dependent metrics per cause and per horizon.
Assumptions:
- time_seq is in days
- horizons_years and the loss CIF times are in years
- disease token ids in event_seq are >= 2 and map to cause_id = token_id - 2
Returns:
DataFrame with columns:
cause_id, horizon_tau, topk_percent, n_samples, n_positives, auc, auprc,
recall_at_K, precision_at_K, brier_score
"""
device = torch.device(device)
model.eval()
head.eval()
horizons_years = [float(x) for x in cfg.horizons_years]
if len(horizons_years) == 0:
raise ValueError("cfg.horizons_years must be non-empty")
topk_percents = [float(x) for x in cfg.topk_percents]
if len(topk_percents) == 0:
raise ValueError("cfg.topk_percents must be non-empty")
if any((p <= 0.0 or p > 100.0) for p in topk_percents):
raise ValueError(
f"All topk_percents must be in (0,100]; got {topk_percents}")
taus_tensor = torch.tensor(
horizons_years, device=device, dtype=torch.float32)
if cfg.cause_ids is None:
cause_ids = None
n_causes_eval = int(n_disease)
else:
cause_ids = torch.tensor(
list(cfg.cause_ids), dtype=torch.long, device=device)
n_causes_eval = int(cause_ids.numel())
# Accumulate per horizon
y_true_by_h: List[List[np.ndarray]] = [[] for _ in horizons_years]
y_pred_by_h: List[List[np.ndarray]] = [[] for _ in horizons_years]
for batch in dataloader:
event_seq, time_seq, cont_feats, cate_feats, sexes = batch
event_seq = event_seq.to(device)
time_seq = time_seq.to(device)
cont_feats = cont_feats.to(device)
cate_feats = cate_feats.to(device)
sexes = sexes.to(device)
h = model(event_seq, time_seq, sexes, cont_feats, cate_feats) # (B,L,D)
# Context index selection (independent of horizon); keep mask is refined per horizon.
keep0, t_ctx, _ = select_context_indices(
event_seq=event_seq,
time_seq=time_seq,
offset_years=float(cfg.offset_years),
tau_years=0.0,
)
if not keep0.any():
continue
b = torch.arange(event_seq.size(0), device=device)
c = h[b, t_ctx] # (B,D)
logits = head(c)
# CIFs for all horizons at once
cifs_all = criterion.calculate_cifs(
logits, taus=taus_tensor) # (B,K,T) or (B,K)
if cifs_all.ndim != 3:
raise ValueError(
f"criterion.calculate_cifs must return (B,K,T) when taus is (T,), got shape={tuple(cifs_all.shape)}"
)
for h_idx, tau_y in enumerate(horizons_years):
keep, _, _ = select_context_indices(
event_seq=event_seq,
time_seq=time_seq,
offset_years=float(cfg.offset_years),
tau_years=float(tau_y),
)
keep = keep & keep0
if not keep.any():
continue
if cause_ids is None:
y = multi_hot_ever_within_horizon(
event_seq=event_seq,
time_seq=time_seq,
t_ctx=t_ctx,
tau_years=float(tau_y),
n_disease=n_disease,
)
y = y[keep]
preds = cifs_all[keep, :, h_idx]
else:
y = multi_hot_selected_causes_within_horizon(
event_seq=event_seq,
time_seq=time_seq,
t_ctx=t_ctx,
tau_years=float(tau_y),
cause_ids=cause_ids,
n_disease=n_disease,
)
y = y[keep]
preds = cifs_all[keep, :, h_idx].index_select(
dim=1, index=cause_ids)
y_true_by_h[h_idx].append(y.detach().to(torch.bool).cpu().numpy())
y_pred_by_h[h_idx].append(
preds.detach().to(torch.float32).cpu().numpy())
rows: List[Dict[str, float | int]] = []
for h_idx, tau_y in enumerate(horizons_years):
if len(y_true_by_h[h_idx]) == 0:
# No eligible samples for this horizon.
for k in range(n_causes_eval):
cause_id = int(k) if cause_ids is None else int(
cfg.cause_ids[k])
for k_percent in topk_percents:
rows.append(
dict(
cause_id=cause_id,
horizon_tau=float(tau_y),
topk_percent=float(k_percent),
n_samples=0,
n_positives=0,
auc=float("nan"),
auprc=float("nan"),
recall_at_K=float("nan"),
precision_at_K=float("nan"),
brier_score=float("nan"),
)
)
continue
y_true = np.concatenate(y_true_by_h[h_idx], axis=0)
y_pred = np.concatenate(y_pred_by_h[h_idx], axis=0)
if y_true.shape != y_pred.shape:
raise ValueError(
f"Shape mismatch at tau={tau_y}: y_true{tuple(y_true.shape)} vs y_pred{tuple(y_pred.shape)}"
)
n_samples = int(y_true.shape[0])
for k in range(n_causes_eval):
yk = y_true[:, k]
pk = y_pred[:, k]
n_pos = int(yk.sum())
auc = _binary_roc_auc(yk, pk)
auprc = _average_precision(yk, pk)
brier = float(np.mean((yk.astype(float) - pk.astype(float))
** 2)) if n_samples > 0 else float("nan")
cause_id = int(k) if cause_ids is None else int(cfg.cause_ids[k])
for k_percent in topk_percents:
precision_k, recall_k = _precision_recall_at_k_percent(
yk, pk, float(k_percent))
rows.append(
dict(
cause_id=cause_id,
horizon_tau=float(tau_y),
topk_percent=float(k_percent),
n_samples=n_samples,
n_positives=n_pos,
auc=float(auc),
auprc=float(auprc),
recall_at_K=float(recall_k),
precision_at_K=float(precision_k),
brier_score=float(brier),
)
)
return pd.DataFrame(rows)

386
losses.py
View File

@@ -131,6 +131,96 @@ class ExponentialNLLLoss(nn.Module):
reduction="mean") * self.lambda_reg reduction="mean") * self.lambda_reg
return nll, reg return nll, reg
def calculate_cifs(
self,
logits: torch.Tensor,
taus: torch.Tensor,
eps: Optional[float] = None,
return_survival: bool = False,
):
"""Compute CIFs for a competing-risks exponential model.
Model assumptions:
- cause-specific hazards are constant in time within a sample.
- hazards are obtained via softplus(logits) + eps.
Args:
logits: (M, K) or (M, K, 1) tensor.
taus: scalar, (T,), (M,), or (M, T) times (>=0 recommended).
eps: overrides self.eps for numerical stability.
return_survival: if True, also return survival S(tau).
Returns:
cifs: (M, K) if taus is scalar or (M,), else (M, K, T).
survival (optional): (M,) if taus is scalar or (M,), else (M, T).
"""
def _prepare_taus(taus_tensor: torch.Tensor, batch_size: int, device, dtype):
t = torch.as_tensor(taus_tensor, device=device, dtype=dtype)
scalar_out = False
kind = "T" # one of: 'T', 'per_sample', 'MT'
if t.ndim == 0:
t = t.view(1)
scalar_out = True
t = t.view(1, 1) # (1,1)
kind = "T"
elif t.ndim == 1:
if t.shape[0] == batch_size:
t = t.view(batch_size, 1) # (M,1)
kind = "per_sample"
else:
t = t.view(1, -1) # (1,T)
kind = "T"
elif t.ndim == 2:
if t.shape[0] != batch_size:
raise ValueError(
f"taus with ndim==2 must have shape (M,T); got {tuple(t.shape)} for M={batch_size}"
)
kind = "MT"
else:
raise ValueError(
f"taus must be scalar, 1D, or 2D; got taus.ndim={t.ndim}")
return t, kind, scalar_out
logits = logits.squeeze(-1) if logits.dim() == 3 else logits
if logits.ndim != 2:
raise ValueError(
f"logits must be 2D (M,K) (or 3D with last dim 1); got shape={tuple(logits.shape)}")
M, K = logits.shape
used_eps = float(self.eps if eps is None else eps)
hazards = F.softplus(logits) + used_eps # (M, K)
total_hazard = hazards.sum(dim=1, keepdim=True) # (M, 1)
total_hazard = torch.clamp(total_hazard, min=used_eps)
frac = hazards / total_hazard # (M, K)
taus_t, kind, scalar_out = _prepare_taus(
taus, M, logits.device, hazards.dtype)
taus_t = torch.clamp(taus_t, min=0)
if kind == "T":
# taus_t: (1,T)
exp_term = 1.0 - torch.exp(-total_hazard * taus_t) # (M,T)
cifs = frac.unsqueeze(-1) * exp_term.unsqueeze(1) # (M,K,T)
survival = torch.exp(-total_hazard * taus_t) # (M,T)
else:
# taus_t: (M,1) or (M,T)
exp_term = 1.0 - torch.exp(-total_hazard * taus_t) # (M,1) or (M,T)
# (M,K,1) or (M,K,T)
cifs = frac.unsqueeze(-1) * exp_term.unsqueeze(1)
survival = torch.exp(-total_hazard * taus_t) # (M,1) or (M,T)
if kind == "per_sample":
cifs = cifs.squeeze(-1) # (M,K)
survival = survival.squeeze(-1) # (M,)
elif scalar_out:
cifs = cifs.squeeze(-1) # (M,K)
survival = survival.squeeze(-1) # (M,)
return (cifs, survival) if return_survival else cifs
class DiscreteTimeCIFNLLLoss(nn.Module): class DiscreteTimeCIFNLLLoss(nn.Module):
"""Direct discrete-time CIF negative log-likelihood (no censoring). """Direct discrete-time CIF negative log-likelihood (no censoring).
@@ -259,6 +349,122 @@ class DiscreteTimeCIFNLLLoss(nn.Module):
return nll, reg return nll, reg
def calculate_cifs(
self,
logits: torch.Tensor,
taus: torch.Tensor,
eps: Optional[float] = None,
return_survival: bool = False,
):
"""Compute discrete-time CIFs implied by per-bin (K causes + complement) logits.
This matches the likelihood used in forward():
p(event=cause k at bin j) = Π_{u=1}^{j-1} p(comp at u) * p(k at j)
Args:
logits: (M, K+1, n_bins+1) where channel K is complement.
taus: scalar, (T,), (M,), or (M,T) continuous times.
eps: unused (kept for signature compatibility).
return_survival: if True, also return survival probability up to the mapped bin.
Returns:
cifs: (M, K) if taus is scalar or (M,), else (M, K, T).
survival (optional): (M,) if taus is scalar or (M,), else (M, T).
"""
def _prepare_taus(taus_tensor: torch.Tensor, batch_size: int, device, dtype):
t = torch.as_tensor(taus_tensor, device=device, dtype=dtype)
scalar_out = False
kind = "T"
if t.ndim == 0:
t = t.view(1)
scalar_out = True
t = t.view(1, 1)
kind = "T"
elif t.ndim == 1:
if t.shape[0] == batch_size:
t = t.view(batch_size, 1)
kind = "per_sample"
else:
t = t.view(1, -1)
kind = "T"
elif t.ndim == 2:
if t.shape[0] != batch_size:
raise ValueError(
f"taus with ndim==2 must have shape (M,T); got {tuple(t.shape)} for M={batch_size}"
)
kind = "MT"
else:
raise ValueError(
f"taus must be scalar, 1D, or 2D; got taus.ndim={t.ndim}")
return t, kind, scalar_out
if logits.ndim != 3:
raise ValueError(
f"logits must have shape (M, K+1, n_bins+1); got {tuple(logits.shape)}"
)
M, k_plus_1, n_bins_plus_1 = logits.shape
K = k_plus_1 - 1
if K < 1:
raise ValueError(
"logits.shape[1] must be at least 2 (K>=1 plus complement)")
n_bins = int(self.bin_edges.numel() - 1)
if n_bins_plus_1 != n_bins + 1:
raise ValueError(
f"logits.shape[2] must equal n_bins+1={n_bins + 1} based on bin_edges; got {n_bins_plus_1}"
)
# probs over causes+complement per bin
probs = F.softmax(logits, dim=1) # (M, K+1, n_bins+1)
p_causes = probs[:, :K, 1:] # (M, K, n_bins)
p_comp = probs[:, K, 1:] # (M, n_bins)
# survival up to end of each bin (1..n_bins)
surv_end = torch.cumprod(p_comp, dim=1) # (M, n_bins)
ones = torch.ones((M, 1), device=logits.device, dtype=surv_end.dtype)
surv_start = torch.cat([ones, surv_end[:, :-1]], dim=1) # (M, n_bins)
inc = surv_start.unsqueeze(1) * p_causes # (M, K, n_bins)
cif_full = torch.cumsum(inc, dim=2) # (M, K, n_bins)
taus_t, kind, scalar_out = _prepare_taus(
taus, M, logits.device, surv_end.dtype)
taus_t = torch.clamp(taus_t, min=0)
bin_edges = self.bin_edges.to(device=logits.device, dtype=taus_t.dtype)
time_bin = torch.bucketize(taus_t, bin_edges) # (..)
time_bin = torch.clamp(time_bin, min=0, max=n_bins).to(torch.long)
if kind == "T":
# (1,T) -> expand to (M,T)
time_bin = time_bin.expand(M, -1)
# kind per_sample gives (M,1), MT gives (M,T)
idx = torch.clamp(time_bin - 1, min=0) # (M,T)
gathered_cif = cif_full.gather(
dim=2,
index=idx.unsqueeze(1).expand(-1, K, -1),
) # (M,K,T)
gathered_surv = surv_end.gather(dim=1, index=idx) # (M,T)
# tau mapped to bin 0 => CIF=0, survival=1
zero_mask = (time_bin == 0)
if zero_mask.any():
gathered_cif = gathered_cif.masked_fill(zero_mask.unsqueeze(1), 0.0)
gathered_surv = gathered_surv.masked_fill(zero_mask, 1.0)
if kind == "per_sample":
gathered_cif = gathered_cif.squeeze(-1) # (M,K)
gathered_surv = gathered_surv.squeeze(-1) # (M,)
elif scalar_out:
gathered_cif = gathered_cif.squeeze(-1) # (M,K)
gathered_surv = gathered_surv.squeeze(-1) # (M,)
return (gathered_cif, gathered_surv) if return_survival else gathered_cif
class PiecewiseExponentialCIFNLLLoss(nn.Module): class PiecewiseExponentialCIFNLLLoss(nn.Module):
""" """
@@ -404,3 +610,183 @@ class PiecewiseExponentialCIFNLLLoss(nn.Module):
reg = torch.zeros((), device=logits.device, dtype=loss_vec.dtype) reg = torch.zeros((), device=logits.device, dtype=loss_vec.dtype)
return nll, reg return nll, reg
def calculate_cifs(
self,
logits: torch.Tensor,
taus: torch.Tensor,
eps: Optional[float] = None,
return_survival: bool = False,
):
"""Compute CIFs for piecewise-constant cause-specific hazards.
Uses the same binning convention as forward(): taus are mapped to a bin via
torch.bucketize(taus, bin_edges), clamped to [0, n_bins]. tau<=0 maps to 0.
Args:
logits: (M, K, n_bins) hazard logits per cause per bin.
taus: scalar, (T,), (M,), or (M,T) times.
eps: overrides self.eps for numerical stability.
return_survival: if True, also return survival S(tau).
Returns:
cifs: (M, K) if taus is scalar or (M,), else (M, K, T).
survival (optional): (M,) if taus is scalar or (M,), else (M, T).
"""
def _prepare_taus(taus_tensor: torch.Tensor, batch_size: int, device, dtype):
t = torch.as_tensor(taus_tensor, device=device, dtype=dtype)
scalar_out = False
kind = "T"
if t.ndim == 0:
t = t.view(1)
scalar_out = True
t = t.view(1, 1)
kind = "T"
elif t.ndim == 1:
if t.shape[0] == batch_size:
t = t.view(batch_size, 1)
kind = "per_sample"
else:
t = t.view(1, -1)
kind = "T"
elif t.ndim == 2:
if t.shape[0] != batch_size:
raise ValueError(
f"taus with ndim==2 must have shape (M,T); got {tuple(t.shape)} for M={batch_size}"
)
kind = "MT"
else:
raise ValueError(
f"taus must be scalar, 1D, or 2D; got taus.ndim={t.ndim}")
return t, kind, scalar_out
if logits.ndim != 3:
raise ValueError(
f"logits must be 3D (M,K,n_bins); got shape={tuple(logits.shape)}")
M, K, n_bins = logits.shape
if self.bin_edges.numel() != n_bins + 1:
raise ValueError(
f"bin_edges length must be n_bins+1={n_bins+1}; got {self.bin_edges.numel()}"
)
used_eps = float(self.eps if eps is None else eps)
taus_t, kind, scalar_out = _prepare_taus(
taus, M, logits.device, logits.dtype)
taus_t = torch.clamp(taus_t, min=0)
bin_edges = self.bin_edges.to(device=logits.device, dtype=taus_t.dtype)
dt_bins = (bin_edges[1:] - bin_edges[:-1]
).to(device=logits.device, dtype=logits.dtype) # (n_bins,)
hazards = F.softplus(logits) + used_eps # (M, K, n_bins)
total_h = hazards.sum(dim=1) # (M, n_bins)
total_h = torch.clamp(total_h, min=used_eps)
# Precompute full-bin CIF increments
H_total_bin = total_h * dt_bins.view(1, n_bins) # (M, n_bins)
cum_H_end = torch.cumsum(H_total_bin, dim=1) # (M, n_bins)
surv_end = torch.exp(-cum_H_end) # (M, n_bins)
ones = torch.ones((M, 1), device=logits.device, dtype=surv_end.dtype)
surv_start = torch.cat([ones, surv_end[:, :-1]], dim=1) # (M, n_bins)
frac = hazards / total_h.unsqueeze(1) # (M, K, n_bins)
one_minus = 1.0 - \
torch.exp(-total_h * dt_bins.view(1, n_bins)) # (M, n_bins)
inc_full = surv_start.unsqueeze(
1) * frac * one_minus.unsqueeze(1) # (M, K, n_bins)
cif_full = torch.cumsum(inc_full, dim=2) # (M, K, n_bins)
# Map taus -> bin index b in [0..n_bins]
time_bin = torch.bucketize(taus_t, bin_edges)
time_bin = torch.clamp(time_bin, min=0, max=n_bins).to(
torch.long) # (...)
if kind == "T":
time_bin = time_bin.expand(M, -1) # (M,T)
# Compute within-bin length l and indices
b = time_bin # (M,T)
idx_bin0 = torch.clamp(b - 1, min=0) # 0..n_bins-1
# Start-of-bin survival for the current bin (for b==0 it's unused)
S_start_b = surv_start.gather(dim=1, index=idx_bin0) # (M,T)
# Length into bin: l = tau - edge[b-1], clamped to [0, dt_bin]
left_edge = bin_edges.gather(
dim=0, index=idx_bin0.view(-1)).view_as(idx_bin0).to(taus_t.dtype)
l = taus_t.expand_as(b) - left_edge
l = torch.clamp(l, min=0)
width_b = dt_bins.gather(
dim=0, index=idx_bin0.view(-1)).view_as(idx_bin0)
l = torch.min(l, width_b.to(l.dtype))
# CIF up to previous full bins
# if b<=1 => 0 else cif_full at (b-2)
prev_idx = torch.clamp(b - 2, min=0)
cif_before = cif_full.gather(
dim=2,
index=prev_idx.unsqueeze(1).expand(-1, K, -1),
) # (M,K,T)
if (b <= 1).any():
cif_before = cif_before.masked_fill((b <= 1).unsqueeze(1), 0.0)
# Partial increment in current bin
total_h_b = total_h.gather(dim=1, index=idx_bin0) # (M,T)
haz_b = hazards.gather(
dim=2,
index=idx_bin0.unsqueeze(1).expand(-1, K, -1),
) # (M,K,T)
frac_b = haz_b / total_h_b.unsqueeze(1) # (M,K,T)
one_minus_partial = 1.0 - torch.exp(-total_h_b * l) # (M,T)
inc_partial = S_start_b.unsqueeze(
1) * frac_b * one_minus_partial.unsqueeze(1) # (M,K,T)
cifs = cif_before + inc_partial
survival = S_start_b * torch.exp(-total_h_b * l) # (M,T)
# Inference-only tail extension beyond the last finite edge.
# For tau > t_B (t_B = bin_edges[-1]), extend survival and CIFs using
# constant hazards from the final bin B:
# S(tau)=S(t_B) * exp(-Λ_B * (tau - t_B))
# F_k(tau)=F_k(t_B) + S(t_B) * (λ_{k,B}/Λ_B) * (1 - exp(-Λ_B*(tau-t_B)))
last_edge = bin_edges[-1]
tau_full = taus_t.expand_as(b) # (M,T)
tail_mask = tau_full > last_edge
if tail_mask.any():
delta = torch.clamp(tau_full - last_edge, min=0) # (M,T)
S_B = surv_end[:, -1].unsqueeze(1) # (M,1)
F_B = cif_full[:, :, -1].unsqueeze(-1) # (M,K,1)
lambda_last = hazards[:, :, -1] # (M,K)
Lambda_last = torch.clamp(
total_h[:, -1], min=used_eps).unsqueeze(1) # (M,1)
exp_tail = torch.exp(-Lambda_last * delta) # (M,T)
survival_tail = S_B * exp_tail # (M,T)
cifs_tail = F_B + \
S_B.unsqueeze(
1) * (lambda_last / Lambda_last).unsqueeze(-1) * (1.0 - exp_tail).unsqueeze(1)
survival = torch.where(tail_mask, survival_tail, survival)
cifs = torch.where(tail_mask.unsqueeze(1), cifs_tail, cifs)
# tau mapped to bin 0 => CIF=0, survival=1
zero_mask = (b == 0)
if zero_mask.any():
cifs = cifs.masked_fill(zero_mask.unsqueeze(1), 0.0)
survival = survival.masked_fill(zero_mask, 1.0)
if kind == "per_sample":
cifs = cifs.squeeze(-1) # (M,K)
survival = survival.squeeze(-1) # (M,)
elif scalar_out:
cifs = cifs.squeeze(-1) # (M,K)
survival = survival.squeeze(-1) # (M,)
return (cifs, survival) if return_survival else cifs

130
utils.py Normal file
View File

@@ -0,0 +1,130 @@
import torch
from typing import Tuple
DAYS_PER_YEAR = 365.25
def select_context_indices(
event_seq: torch.Tensor,
time_seq: torch.Tensor,
offset_years: float,
tau_years: float = 0.0,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""Select per-sample prediction context index.
IMPORTANT SEMANTICS:
- The last observed token time is treated as the FOLLOW-UP END time.
- We pick the last valid token with time <= (followup_end_time - offset).
- We do NOT interpret followup_end_time as an event time.
Returns:
keep_mask: (B,) bool, which samples have a valid context
t_ctx: (B,) long, index into sequence
t_ctx_time: (B,) float, time (days) at context
"""
# valid tokens are event != 0 (padding is 0)
valid = event_seq != 0
lengths = valid.sum(dim=1)
last_idx = torch.clamp(lengths - 1, min=0)
b = torch.arange(event_seq.size(0), device=event_seq.device)
followup_end_time = time_seq[b, last_idx]
t_cut = followup_end_time - (offset_years * DAYS_PER_YEAR)
eligible = valid & (time_seq <= t_cut.unsqueeze(1))
eligible_counts = eligible.sum(dim=1)
keep = eligible_counts > 0
t_ctx = torch.clamp(eligible_counts - 1, min=0).to(torch.long)
t_ctx_time = time_seq[b, t_ctx]
# Horizon-aligned eligibility: require enough follow-up time after the selected context.
# All times are in days.
keep = keep & (followup_end_time >= (
t_ctx_time + (tau_years * DAYS_PER_YEAR)))
return keep, t_ctx, t_ctx_time
def multi_hot_ever_within_horizon(
event_seq: torch.Tensor,
time_seq: torch.Tensor,
t_ctx: torch.Tensor,
tau_years: float,
n_disease: int,
) -> torch.Tensor:
"""Binary labels: disease k occurs within tau after context (any occurrence)."""
B, L = event_seq.shape
b = torch.arange(B, device=event_seq.device)
t0 = time_seq[b, t_ctx]
t1 = t0 + (tau_years * DAYS_PER_YEAR)
idxs = torch.arange(L, device=event_seq.device).unsqueeze(0).expand(B, -1)
# Include same-day events after context, exclude any token at/before context index.
in_window = (
(idxs > t_ctx.unsqueeze(1))
& (time_seq >= t0.unsqueeze(1))
& (time_seq <= t1.unsqueeze(1))
& (event_seq >= 2)
& (event_seq != 0)
)
if not in_window.any():
return torch.zeros((B, n_disease), dtype=torch.bool, device=event_seq.device)
b_idx, t_idx = in_window.nonzero(as_tuple=True)
disease_ids = (event_seq[b_idx, t_idx] - 2).to(torch.long)
y = torch.zeros((B, n_disease), dtype=torch.bool, device=event_seq.device)
y[b_idx, disease_ids] = True
return y
def multi_hot_selected_causes_within_horizon(
event_seq: torch.Tensor,
time_seq: torch.Tensor,
t_ctx: torch.Tensor,
tau_years: float,
cause_ids: torch.Tensor,
n_disease: int,
) -> torch.Tensor:
"""Labels for selected causes only: does cause k occur within tau after context?"""
B, L = event_seq.shape
device = event_seq.device
b = torch.arange(B, device=device)
t0 = time_seq[b, t_ctx]
t1 = t0 + (tau_years * DAYS_PER_YEAR)
idxs = torch.arange(L, device=device).unsqueeze(0).expand(B, -1)
in_window = (
(idxs > t_ctx.unsqueeze(1))
& (time_seq >= t0.unsqueeze(1))
& (time_seq <= t1.unsqueeze(1))
& (event_seq >= 2)
& (event_seq != 0)
)
out = torch.zeros((B, cause_ids.numel()), dtype=torch.bool, device=device)
if not in_window.any():
return out
b_idx, t_idx = in_window.nonzero(as_tuple=True)
disease_ids = (event_seq[b_idx, t_idx] - 2).to(torch.long)
# Filter to selected causes via a boolean membership mask over the global disease space.
selected = torch.zeros((int(n_disease),), dtype=torch.bool, device=device)
selected[cause_ids] = True
keep = selected[disease_ids]
if not keep.any():
return out
b_idx = b_idx[keep]
disease_ids = disease_ids[keep]
# Map disease_id -> local index in cause_ids
# Build a lookup table (global disease space) where lookup[disease_id] = local_index
lookup = torch.full((int(n_disease),), -1, dtype=torch.long, device=device)
lookup[cause_ids] = torch.arange(cause_ids.numel(), device=device)
local = lookup[disease_ids]
out[b_idx, local] = True
return out