Add Piecewise Exponential CIF Loss and update model evaluation for PWE

This commit is contained in:
2026-01-15 11:36:24 +08:00
parent d8b322cbee
commit 2f46acf2bd
3 changed files with 275 additions and 6 deletions

146
losses.py
View File

@@ -258,3 +258,149 @@ class DiscreteTimeCIFNLLLoss(nn.Module):
F.nll_loss(logp_at_event_bin, target_events, reduction="mean")
return nll, reg
class PiecewiseExponentialCIFNLLLoss(nn.Module):
"""
Piecewise-Exponential (PWE) cause-specific hazards with discrete-time CIF likelihood.
- No censoring
- No regularization (reg always 0)
- Forward signature matches DiscreteTimeCIFNLLLoss:
forward(logits, target_events, dt, reduction) -> (nll, reg)
Expected shapes:
logits: (M, K, n_bins) # hazard logits per cause per bin
target_events: (M,) long in [0, K-1]
dt: (M,) event times (strictly > 0)
bin_edges:
length n_bins+1, strictly increasing, bin_edges[0]==0,
and MUST be finite at the last edge (no +inf) for PWE.
"""
def __init__(
self,
bin_edges: Sequence[float],
eps: float = 1e-6,
lambda_reg: float = 0.0, # kept for signature compatibility; UNUSED
):
super().__init__()
if len(bin_edges) < 2:
raise ValueError("bin_edges must have length >= 2 (n_bins >= 1)")
if float(bin_edges[0]) != 0.0:
raise ValueError("bin_edges[0] must equal 0.0")
for i in range(1, len(bin_edges)):
if not (float(bin_edges[i]) > float(bin_edges[i - 1])):
raise ValueError("bin_edges must be strictly increasing")
if math.isinf(float(bin_edges[-1])):
raise ValueError(
"PiecewiseExponentialCIFNLLLoss requires a finite last bin edge (no +inf). "
"Use a finite truncation horizon for PWE."
)
self.eps = float(eps)
# unused, kept only for interface compatibility
self.lambda_reg = float(lambda_reg)
self.register_buffer(
"bin_edges",
torch.tensor([float(x) for x in bin_edges], dtype=torch.float32),
persistent=False,
)
def forward(
self,
logits: torch.Tensor,
target_events: torch.Tensor,
dt: torch.Tensor,
reduction: str = "mean",
) -> Tuple[torch.Tensor, torch.Tensor]:
if reduction not in {"mean", "sum", "none"}:
raise ValueError("reduction must be one of {'mean','sum','none'}")
if logits.ndim != 3:
raise ValueError(
f"logits must be 3D (M, K, n_bins); got shape={tuple(logits.shape)}")
if target_events.ndim != 1 or dt.ndim != 1:
raise ValueError("target_events and dt must be 1D tensors")
if logits.shape[0] != target_events.shape[0] or logits.shape[0] != dt.shape[0]:
raise ValueError(
"Batch size mismatch among logits, target_events, dt")
if not torch.all(dt > 0):
raise ValueError(
"dt must be strictly positive (no censoring supported here)")
M, K, n_bins = logits.shape
if target_events.dtype != torch.long:
target_events = target_events.to(torch.long)
if (target_events < 0).any() or (target_events >= K).any():
raise ValueError(f"target_events must be in [0, {K-1}]")
# Prepare bin_edges / bin widths
bin_edges = self.bin_edges.to(device=dt.device, dtype=dt.dtype)
if bin_edges.numel() != n_bins + 1:
raise ValueError(
f"bin_edges length must be n_bins+1={n_bins+1}; got {bin_edges.numel()}"
)
dt_bins = (bin_edges[1:] - bin_edges[:-1]
).to(device=logits.device, dtype=logits.dtype) # (n_bins,)
if not torch.isfinite(dt_bins).all():
raise ValueError("All bin widths must be finite for PWE.")
if not (dt_bins > 0).all():
raise ValueError(
"All bin widths must be strictly positive for PWE.")
# Map event time -> bin index k* in {1..n_bins}
# (same convention as your discrete_time_cif: clamp to [1, n_bins])
time_bin = torch.bucketize(dt, bin_edges)
time_bin = torch.clamp(
time_bin, min=1, max=n_bins).to(torch.long) # (M,)
k0 = time_bin - 1 # 0..n_bins-1
# Nonnegative hazards per cause per bin
hazards = F.softplus(logits) + self.eps # (M, K, n_bins)
# Integrated hazards H_{j,k} = lambda_{j,k} * Δt_k
H_jk = hazards * dt_bins.view(1, 1, n_bins) # (M, K, n_bins)
H_k = H_jk.sum(dim=1) # (M, n_bins)
# Previous survival term: Σ_{u<k*} H_u
bins = torch.arange(
1, n_bins + 1, device=logits.device).unsqueeze(0) # (1, n_bins)
mask_prev = bins < time_bin.unsqueeze(1) # (M, n_bins)
loss_prev = (H_k * mask_prev.to(H_k.dtype)).sum(dim=1) # (M,)
# Event term at k*: -log p_{k*}(cause)
m_idx = torch.arange(M, device=logits.device)
H_event_total = torch.clamp(H_k[m_idx, k0], min=self.eps) # (M,)
H_event_cause = torch.clamp(
H_jk[m_idx, target_events, k0], min=self.eps) # (M,)
# log(1 - exp(-H)) stable
log1mexp = torch.log(-torch.expm1(-H_event_total)) # (M,)
loss_event = -log1mexp - \
torch.log(H_event_cause) + torch.log(H_event_total)
loss_vec = loss_prev + loss_event # (M,)
if reduction == "mean":
nll = loss_vec.mean()
elif reduction == "sum":
nll = loss_vec.sum()
else:
nll = loss_vec
if self.lambda_reg > 0.0 and n_bins >= 3:
log_h = torch.log(hazards) # (M, K, n_bins)
d2 = log_h[:, :, 2:] - 2.0 * log_h[:, :, 1:-1] + \
log_h[:, :, :-2] # (M, K, n_bins-2)
reg = self.lambda_reg * (d2.pow(2).mean())
else:
reg = torch.zeros((), device=logits.device, dtype=loss_vec.dtype)
return nll, reg