refactor: Use AdamW optimizer and increase early stopping patience

This commit is contained in:
2025-10-17 10:31:12 +08:00
parent cb7575a229
commit 02d84a7eca
2 changed files with 7 additions and 3 deletions

4
requirements.txt Normal file
View File

@@ -0,0 +1,4 @@
torch
numpy
tqdm
matplotlib

View File

@@ -1,6 +1,6 @@
import torch
import torch.nn as nn
from torch.optim import Adam
from torch.optim import AdamW
from torch.utils.data import DataLoader
import numpy as np
import math
@@ -30,7 +30,7 @@ class TrainConfig:
lr_initial = 6e-4
lr_final = 6e-5
warmup_epochs = 10
early_stopping_patience = 5
early_stopping_patience = 10
# Loss parameters
# 0 = padding, 1 = "no event"
@@ -72,7 +72,7 @@ def main():
print(f"Model initialized with {model.get_num_params():.2f}M trainable parameters.")
loss_fn = CombinedLoss(config.ignored_token_ids)
optimizer = Adam(model.parameters(), lr=config.lr_initial)
optimizer = AdamW(model.parameters(), lr=config.lr_initial)
# --- 3. Training Loop ---
best_val_loss = float('inf')