Files
DeepHealth/prepare_data.py

217 lines
9.3 KiB
Python
Raw Normal View History

import pandas as pd # Pandas for data manipulation
import tqdm # Progress bar for chunk processing
import numpy as np # Numerical operations
# CSV mapping field IDs to human-readable names
field_map_file = "field_ids_enriched.csv"
# Map original field ID -> new column name
field_dict = {}
tabular_fields = [] # List of tabular feature column names
with open(field_map_file, "r", encoding="utf-8") as f: # Open the field mapping file
next(f) # skip header line
for line in f: # Iterate through lines
parts = line.strip().split(",") # Split by CSV commas
if len(parts) >= 3: # Ensure we have at least id and name columns (fix: was >=2)
# Original field identifier (e.g., "34-0.0")
field_id = parts[0]
field_name = parts[2] # Human-readable column name
field_dict[field_id] = field_name # Record the mapping
# Track as a potential tabular feature
tabular_fields.append(field_name)
# Exclude raw date parts and target columns
exclude_fields = ['year', 'month', 'Death', 'age_at_assessment']
tabular_fields = [
# Filter out excluded columns
field for field in tabular_fields if field not in exclude_fields]
# TSV mapping field IDs to ICD10-related date columns
field_to_icd_map = "icd10_codes_mod.tsv"
# Date-like variables to be converted to offsets
date_vars = []
with open(field_to_icd_map, "r", encoding="utf-8") as f: # Open ICD10 mapping
for line in f: # Iterate each mapping row
parts = line.strip().split() # Split on whitespace for TSV
if len(parts) >= 6: # Guard against malformed lines
# Map field ID to the date column name
field_dict[parts[0]] = parts[5]
date_vars.append(parts[5]) # Track date column names in order
for j in range(17): # Map up to 17 cancer entry slots (dates and types)
# Cancer diagnosis date slot j
field_dict[f'40005-{j}.0'] = f'cancer_date_{j}'
field_dict[f'40006-{j}.0'] = f'cancer_type_{j}' # Cancer type/code slot j
# Number of ICD-related date columns before adding extras
len_icd = len(date_vars)
date_vars.extend(['Death', 'date_of_assessment'] + # Add outcome date and assessment date
# Add cancer date columns
[f'cancer_date_{j}' for j in range(17)])
labels_file = "labels.csv" # File listing label codes
label_dict = {} # Map code string -> integer label id
with open(labels_file, "r", encoding="utf-8") as f: # Open labels file
for idx, line in enumerate(f): # Enumerate to assign incremental label IDs
parts = line.strip().split(' ') # Split by space
if parts and parts[0]: # Guard against empty lines
# Map code to index (0 for padding, 1 for checkup)
label_dict[parts[0]] = idx + 2
event_list = [] # Accumulator for event arrays across chunks
tabular_list = [] # Accumulator for tabular feature DataFrames across chunks
ukb_iterator = pd.read_csv( # Stream UK Biobank data in chunks
"ukb_data.csv",
sep=',',
chunksize=10000, # Stream file in manageable chunks to reduce memory footprint
# First column (participant ID) becomes DataFrame index
index_col=0,
low_memory=False # Disable type inference optimization for consistent dtypes
)
# Iterate chunks with progress
for ukb_chunk in tqdm.tqdm(ukb_iterator, desc="Processing UK Biobank data"):
# Rename columns to friendly names
ukb_chunk = ukb_chunk.rename(columns=field_dict)
# Require sex to be present
ukb_chunk.dropna(subset=['sex'], inplace=True)
# Construct date of birth from year and month (day fixed to 1)
ukb_chunk['day'] = 1
ukb_chunk['dob'] = pd.to_datetime(
# Guard against malformed dates
ukb_chunk[['year', 'month', 'day']], errors='coerce'
)
del ukb_chunk['day']
# Use only date variables that actually exist in the current chunk
present_date_vars = [c for c in date_vars if c in ukb_chunk.columns]
# Convert date-like columns to datetime and compute day offsets from dob
if present_date_vars:
date_cols = ukb_chunk[present_date_vars].apply(
pd.to_datetime, format="%Y-%m-%d", errors='coerce' # Parse dates safely
)
date_cols_days = date_cols.sub(
ukb_chunk['dob'], axis=0) # Timedelta relative to dob
ukb_chunk[present_date_vars] = date_cols_days.apply(
lambda x: x.dt.days) # Store days since dob
# Append tabular features (use only columns that exist)
present_tabular_fields = [
c for c in tabular_fields if c in ukb_chunk.columns]
tabular_list.append(ukb_chunk[present_tabular_fields].copy())
# Process disease events from ICD10-related date columns
# Take ICD date cols plus 'Death' if present by order
icd10_cols = present_date_vars[:len_icd + 1]
# Melt to long form: participant id, event code (column name), and days offset
melted_df = ukb_chunk.reset_index().melt(
id_vars=['eid'],
value_vars=icd10_cols,
var_name='event_code',
value_name='days',
)
# Require non-missing day offsets
melted_df.dropna(subset=['days'], inplace=True)
if not melted_df.empty:
melted_df['label'] = melted_df['event_code'].map(
label_dict) # Map event code to numeric label
# Fix: ensure labels exist before int cast
melted_df.dropna(subset=['label'], inplace=True)
if not melted_df.empty:
event_list.append(
melted_df[['eid', 'days', 'label']]
.astype(int) # Safe now since label and days are non-null
.to_numpy()
)
# Optimized cancer processing without wide_to_long
cancer_frames = []
for j in range(17):
d_col = f'cancer_date_{j}'
t_col = f'cancer_type_{j}'
if d_col in ukb_chunk.columns and t_col in ukb_chunk.columns:
# Filter rows where both date and type are present
mask = ukb_chunk[d_col].notna() & ukb_chunk[t_col].notna()
if mask.any():
subset_idx = ukb_chunk.index[mask]
subset_days = ukb_chunk.loc[mask, d_col]
subset_type = ukb_chunk.loc[mask, t_col]
# Map cancer type to label
# Use first 3 chars
cancer_codes = subset_type.str.slice(0, 3)
labels = cancer_codes.map(label_dict)
# Filter valid labels
valid_label_mask = labels.notna()
if valid_label_mask.any():
# Create array: eid, days, label
# Ensure types are correct for numpy
c_eids = subset_idx[valid_label_mask].values
c_days = subset_days[valid_label_mask].values
c_labels = labels[valid_label_mask].values
# Stack
chunk_cancer_data = np.column_stack(
(c_eids, c_days, c_labels))
cancer_frames.append(chunk_cancer_data)
if cancer_frames:
event_list.append(np.vstack(cancer_frames))
# Combine tabular chunks
final_tabular = pd.concat(tabular_list, axis=0, ignore_index=False)
final_tabular.index.name = 'eid' # Ensure index named consistently
data = np.vstack(event_list) # Stack all event arrays into one
# Sort by participant then day
data = data[np.lexsort((data[:, 1], data[:, 0]))]
# Keep only events with non-negative day offsets
data = data[data[:, 1] >= 0]
# Remove duplicate (participant_id, label) pairs keeping first occurrence.
data = pd.DataFrame(data).drop_duplicates([0, 2]).values
# Store compactly using unsigned 32-bit integers
data = data.astype(np.uint32)
# Select eid in both data and tabular
valid_eids = np.intersect1d(data[:, 0], final_tabular.index)
data = data[np.isin(data[:, 0], valid_eids)]
final_tabular = final_tabular.loc[valid_eids]
final_tabular = final_tabular.convert_dtypes()
# Save [eid, sex, date_of_assessment] for basic info
basic_info = final_tabular[['sex', 'date_of_assessment']]
basic_info.to_csv("ukb_basic_info.csv")
# Drop sex and date_of_assessment from tabular features
final_tabular = final_tabular.drop(columns=['sex', 'date_of_assessment'])
# Process categorical columns in tabular features
# If a column is integer type with few unique values, treat as categorical. For each integer column:
# Count unique values (exclude NaN, and negative values if any) as C, set NaN or negative to 0, remap original values to [1..C].
for col in final_tabular.select_dtypes(include=['Int64', 'int64']).columns:
# Get unique values efficiently
series = final_tabular[col]
unique_vals = series.dropna().unique()
# Filter negatives from unique values
valid_vals = sorted([v for v in unique_vals if v >= 0])
if len(valid_vals) <= 10: # Threshold for categorical
# Create mapping
val_map = {val: idx + 1 for idx, val in enumerate(valid_vals)}
# Map values. Values not in val_map (negatives, NaNs) become NaN
mapped_col = series.map(val_map)
# Fill NaN with 0 and convert to uint32
final_tabular[col] = mapped_col.fillna(0).astype(np.uint32)
# Save processed tabular features
final_tabular.to_csv("ukb_table.csv")
# Save event data
np.save("ukb_event_data.npy", data)