2026-01-17 15:31:12 +08:00
|
|
|
|
"""Horizon-capture evaluation (event-driven, age-stratified).
|
2026-01-17 13:49:39 +08:00
|
|
|
|
|
2026-01-17 15:31:12 +08:00
|
|
|
|
This script implements the protocol described in 评估方案.md:
|
2026-01-17 13:49:39 +08:00
|
|
|
|
|
2026-01-17 15:31:12 +08:00
|
|
|
|
- Age-stratified evaluation: metrics are computed independently within each age bin (no mixing).
|
|
|
|
|
|
- Event-driven inclusion: each (person, age_bin) yields a record iff DOA <= bin upper bound and
|
|
|
|
|
|
there is at least one disease event in the bin; baseline t0 is sampled randomly from in-bin
|
|
|
|
|
|
disease events with t0 >= DOA.
|
|
|
|
|
|
- No follow-up completeness filtering (no t0+tau <= t_end constraint).
|
|
|
|
|
|
|
|
|
|
|
|
Primary outputs per age bin:
|
|
|
|
|
|
- Top-K Event Capture@tau (event-count based)
|
|
|
|
|
|
- Workload–Yield curves (Top-p% people by a person-level horizon score)
|
|
|
|
|
|
|
|
|
|
|
|
Secondary (diagnostic-only) outputs per age bin:
|
|
|
|
|
|
- Approximate event-driven AUC / Brier (no IPCW, no censoring adjustment)
|
2026-01-17 13:49:39 +08:00
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
import argparse
|
2026-01-17 15:31:12 +08:00
|
|
|
|
import math
|
2026-01-17 13:49:39 +08:00
|
|
|
|
import os
|
2026-01-17 15:31:12 +08:00
|
|
|
|
from typing import Dict, List, Sequence, Tuple
|
2026-01-17 13:49:39 +08:00
|
|
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
|
import pandas as pd
|
|
|
|
|
|
import torch
|
|
|
|
|
|
from torch.utils.data import DataLoader
|
|
|
|
|
|
|
2026-01-17 14:00:42 +08:00
|
|
|
|
try:
|
|
|
|
|
|
from tqdm import tqdm
|
|
|
|
|
|
except Exception: # pragma: no cover
|
|
|
|
|
|
tqdm = None
|
|
|
|
|
|
|
2026-01-17 13:49:39 +08:00
|
|
|
|
from utils import (
|
|
|
|
|
|
EvalRecordDataset,
|
|
|
|
|
|
build_dataset_from_config,
|
|
|
|
|
|
build_event_driven_records,
|
|
|
|
|
|
build_model_head_criterion,
|
|
|
|
|
|
eval_collate_fn,
|
|
|
|
|
|
flatten_future_events,
|
|
|
|
|
|
get_test_subset,
|
|
|
|
|
|
load_checkpoint_into,
|
|
|
|
|
|
load_train_config,
|
|
|
|
|
|
make_inference_dataloader_kwargs,
|
|
|
|
|
|
parse_float_list,
|
|
|
|
|
|
predict_cifs,
|
|
|
|
|
|
roc_auc_ovr,
|
|
|
|
|
|
seed_everything,
|
|
|
|
|
|
topk_indices,
|
2026-01-17 15:31:12 +08:00
|
|
|
|
DAYS_PER_YEAR,
|
2026-01-17 13:49:39 +08:00
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def parse_args() -> argparse.Namespace:
|
|
|
|
|
|
p = argparse.ArgumentParser(
|
|
|
|
|
|
description="Evaluate horizon-capture using CIF at horizons")
|
|
|
|
|
|
p.add_argument("--run_dir", type=str, required=True)
|
|
|
|
|
|
p.add_argument(
|
|
|
|
|
|
"--horizons",
|
|
|
|
|
|
type=str,
|
|
|
|
|
|
nargs="+",
|
|
|
|
|
|
default=["0.25", "0.5", "1.0", "2.0", "5.0", "10.0"],
|
|
|
|
|
|
help="Horizon grid in years",
|
|
|
|
|
|
)
|
|
|
|
|
|
p.add_argument(
|
|
|
|
|
|
"--age_bins",
|
|
|
|
|
|
type=str,
|
|
|
|
|
|
nargs="+",
|
2026-01-17 15:31:12 +08:00
|
|
|
|
default=["40", "45", "50", "55", "60", "65", "70", "inf"],
|
|
|
|
|
|
help="Age bin boundaries in years (default: 40 45 50 55 60 65 70 inf)",
|
2026-01-17 13:49:39 +08:00
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
p.add_argument(
|
|
|
|
|
|
"--device",
|
|
|
|
|
|
type=str,
|
|
|
|
|
|
default=("cuda" if torch.cuda.is_available() else "cpu"),
|
|
|
|
|
|
)
|
|
|
|
|
|
p.add_argument("--batch_size", type=int, default=256)
|
|
|
|
|
|
p.add_argument("--num_workers", type=int, default=0)
|
2026-01-17 23:53:24 +08:00
|
|
|
|
p.add_argument(
|
|
|
|
|
|
"--max_cpu_cores",
|
|
|
|
|
|
type=int,
|
|
|
|
|
|
default=-1,
|
|
|
|
|
|
help="Maximum number of CPU cores to use for parallel data construction.",
|
|
|
|
|
|
)
|
2026-01-17 13:49:39 +08:00
|
|
|
|
p.add_argument("--seed", type=int, default=0)
|
|
|
|
|
|
p.add_argument("--min_pos", type=int, default=20)
|
|
|
|
|
|
p.add_argument(
|
|
|
|
|
|
"--topk_list",
|
|
|
|
|
|
type=int,
|
|
|
|
|
|
nargs="+",
|
2026-01-17 15:31:12 +08:00
|
|
|
|
default=[5, 10, 20, 50],
|
|
|
|
|
|
)
|
|
|
|
|
|
p.add_argument(
|
|
|
|
|
|
"--workload_fracs",
|
|
|
|
|
|
type=float,
|
|
|
|
|
|
nargs="+",
|
|
|
|
|
|
default=[0.01, 0.02, 0.05, 0.1, 0.2, 0.5],
|
|
|
|
|
|
help="Fractions for workload–yield curves (Top-p%% people).",
|
2026-01-17 13:49:39 +08:00
|
|
|
|
)
|
2026-01-17 14:00:42 +08:00
|
|
|
|
p.add_argument(
|
|
|
|
|
|
"--no_tqdm",
|
|
|
|
|
|
action="store_true",
|
|
|
|
|
|
help="Disable tqdm progress bars",
|
|
|
|
|
|
)
|
2026-01-17 13:49:39 +08:00
|
|
|
|
return p.parse_args()
|
|
|
|
|
|
|
|
|
|
|
|
|
2026-01-17 15:31:12 +08:00
|
|
|
|
def _format_age_bin_label(lo: float, hi: float) -> str:
|
|
|
|
|
|
if np.isinf(hi):
|
|
|
|
|
|
return f"[{lo}, inf)"
|
|
|
|
|
|
return f"[{lo}, {hi})"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _assign_age_bin_idx(t0_days: np.ndarray, age_bins_years: Sequence[float]) -> np.ndarray:
|
|
|
|
|
|
age_bins_years = np.asarray(list(age_bins_years), dtype=np.float64)
|
|
|
|
|
|
age_bins_days = age_bins_years * DAYS_PER_YEAR
|
|
|
|
|
|
return np.searchsorted(age_bins_days, t0_days, side="left") - 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _event_counts_within_tau(
|
|
|
|
|
|
n_records: int,
|
|
|
|
|
|
event_record_idx: np.ndarray,
|
|
|
|
|
|
event_dt_years: np.ndarray,
|
|
|
|
|
|
tau_years: float,
|
|
|
|
|
|
) -> np.ndarray:
|
|
|
|
|
|
"""Count events within (t0, t0+tau] per record (event-count, not unique causes)."""
|
|
|
|
|
|
if event_record_idx.size == 0:
|
|
|
|
|
|
return np.zeros((n_records,), dtype=np.int64)
|
|
|
|
|
|
m = event_dt_years <= float(tau_years)
|
|
|
|
|
|
if not np.any(m):
|
|
|
|
|
|
return np.zeros((n_records,), dtype=np.int64)
|
|
|
|
|
|
return np.bincount(event_record_idx[m], minlength=n_records).astype(np.int64)
|
|
|
|
|
|
|
|
|
|
|
|
|
2026-01-17 13:49:39 +08:00
|
|
|
|
def build_labels_within_tau_flat(
|
|
|
|
|
|
n_records: int,
|
|
|
|
|
|
n_causes: int,
|
|
|
|
|
|
event_record_idx: np.ndarray,
|
|
|
|
|
|
event_cause: np.ndarray,
|
|
|
|
|
|
event_dt_years: np.ndarray,
|
|
|
|
|
|
tau_years: float,
|
|
|
|
|
|
) -> np.ndarray:
|
|
|
|
|
|
"""Build y_within_tau using a flattened (record,cause,dt) representation.
|
|
|
|
|
|
|
|
|
|
|
|
This preserves the exact label definition: y[i,k]=1 iff at least one event of cause k
|
|
|
|
|
|
occurs in (t0, t0+tau].
|
|
|
|
|
|
"""
|
|
|
|
|
|
y = np.zeros((n_records, n_causes), dtype=np.int8)
|
|
|
|
|
|
if event_dt_years.size == 0:
|
|
|
|
|
|
return y
|
|
|
|
|
|
m = event_dt_years <= float(tau_years)
|
|
|
|
|
|
if not np.any(m):
|
|
|
|
|
|
return y
|
|
|
|
|
|
y[event_record_idx[m], event_cause[m]] = 1
|
|
|
|
|
|
return y
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def main() -> None:
|
|
|
|
|
|
args = parse_args()
|
|
|
|
|
|
seed_everything(args.seed)
|
|
|
|
|
|
|
2026-01-17 14:00:42 +08:00
|
|
|
|
show_progress = (not args.no_tqdm)
|
|
|
|
|
|
|
2026-01-17 13:49:39 +08:00
|
|
|
|
run_dir = args.run_dir
|
|
|
|
|
|
cfg = load_train_config(run_dir)
|
|
|
|
|
|
|
|
|
|
|
|
dataset = build_dataset_from_config(cfg)
|
|
|
|
|
|
test_subset = get_test_subset(dataset, cfg)
|
|
|
|
|
|
|
|
|
|
|
|
age_bins_years = parse_float_list(args.age_bins)
|
|
|
|
|
|
horizons = parse_float_list(args.horizons)
|
|
|
|
|
|
horizons = [float(h) for h in horizons]
|
|
|
|
|
|
|
|
|
|
|
|
records = build_event_driven_records(
|
|
|
|
|
|
subset=test_subset,
|
|
|
|
|
|
age_bins_years=age_bins_years,
|
|
|
|
|
|
seed=args.seed,
|
2026-01-17 14:00:42 +08:00
|
|
|
|
show_progress=show_progress,
|
2026-01-17 23:53:24 +08:00
|
|
|
|
n_jobs=int(args.max_cpu_cores),
|
2026-01-17 13:49:39 +08:00
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
device = torch.device(args.device)
|
|
|
|
|
|
model, head, criterion = build_model_head_criterion(cfg, dataset, device)
|
|
|
|
|
|
load_checkpoint_into(run_dir, model, head, criterion, device)
|
|
|
|
|
|
|
2026-01-17 14:42:02 +08:00
|
|
|
|
rec_ds = EvalRecordDataset(test_subset, records)
|
2026-01-17 13:49:39 +08:00
|
|
|
|
|
|
|
|
|
|
dl_kwargs = make_inference_dataloader_kwargs(device, args.num_workers)
|
|
|
|
|
|
loader = DataLoader(
|
|
|
|
|
|
rec_ds,
|
|
|
|
|
|
batch_size=args.batch_size,
|
|
|
|
|
|
shuffle=False,
|
|
|
|
|
|
num_workers=args.num_workers,
|
|
|
|
|
|
collate_fn=eval_collate_fn,
|
|
|
|
|
|
**dl_kwargs,
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
# Print disclaimers every run (requested)
|
2026-01-17 15:31:12 +08:00
|
|
|
|
print("PRIMARY METRICS: event-count Capture@K and Workload–Yield, computed independently per age bin.")
|
|
|
|
|
|
print("DIAGNOSTICS ONLY: AUC/Brier below are event-driven approximations (no IPCW / censoring adjustment).")
|
2026-01-17 13:49:39 +08:00
|
|
|
|
|
2026-01-17 14:00:42 +08:00
|
|
|
|
scores = predict_cifs(
|
|
|
|
|
|
model,
|
|
|
|
|
|
head,
|
|
|
|
|
|
criterion,
|
|
|
|
|
|
loader,
|
|
|
|
|
|
horizons,
|
|
|
|
|
|
device=device,
|
|
|
|
|
|
show_progress=show_progress,
|
|
|
|
|
|
progress_desc="Inference (horizons)",
|
|
|
|
|
|
)
|
2026-01-17 13:49:39 +08:00
|
|
|
|
# scores shape: (N, K, H)
|
|
|
|
|
|
if scores.ndim != 3:
|
|
|
|
|
|
raise ValueError(
|
|
|
|
|
|
f"Expected CIF scores with shape (N,K,H), got {scores.shape}")
|
|
|
|
|
|
|
|
|
|
|
|
N, K, H = scores.shape
|
|
|
|
|
|
if N != len(records):
|
|
|
|
|
|
raise ValueError("Record count mismatch")
|
|
|
|
|
|
|
|
|
|
|
|
# Pre-flatten all future events once to avoid repeated per-record scans.
|
2026-01-17 15:31:12 +08:00
|
|
|
|
# NOTE: these are event-level arrays (not unique causes), suitable for event-count Capture@K.
|
2026-01-17 13:49:39 +08:00
|
|
|
|
evt_rec_idx, evt_cause, evt_dt = flatten_future_events(records, n_causes=K)
|
|
|
|
|
|
|
2026-01-17 15:31:12 +08:00
|
|
|
|
# Assign each record to an age bin (based on t0; by construction t0 is within the bin).
|
|
|
|
|
|
t0_days = np.asarray([float(r.t0_days) for r in records], dtype=np.float64)
|
|
|
|
|
|
bin_idx = _assign_age_bin_idx(t0_days, age_bins_years)
|
|
|
|
|
|
age_bins_years_arr = np.asarray(list(age_bins_years), dtype=np.float64)
|
|
|
|
|
|
|
|
|
|
|
|
capture_rows: List[Dict[str, object]] = []
|
2026-01-17 13:49:39 +08:00
|
|
|
|
workload_rows: List[Dict[str, object]] = []
|
|
|
|
|
|
|
2026-01-17 15:31:12 +08:00
|
|
|
|
# Diagnostics (optional): approximate event-driven AUC/Brier computed per bin.
|
|
|
|
|
|
diag_rows: List[Dict[str, object]] = []
|
|
|
|
|
|
diag_per_cause_parts: List[pd.DataFrame] = []
|
|
|
|
|
|
|
|
|
|
|
|
bins_iter = range(len(age_bins_years_arr) - 1)
|
2026-01-17 14:00:42 +08:00
|
|
|
|
if show_progress and tqdm is not None:
|
2026-01-17 15:31:12 +08:00
|
|
|
|
bins_iter = tqdm(bins_iter, total=len(
|
|
|
|
|
|
age_bins_years_arr) - 1, desc="Age bins")
|
|
|
|
|
|
|
|
|
|
|
|
for b in bins_iter:
|
|
|
|
|
|
lo = float(age_bins_years_arr[b])
|
|
|
|
|
|
hi = float(age_bins_years_arr[b + 1])
|
|
|
|
|
|
age_label = _format_age_bin_label(lo, hi)
|
|
|
|
|
|
|
|
|
|
|
|
m_rec = bin_idx == b
|
|
|
|
|
|
n_bin = int(m_rec.sum())
|
|
|
|
|
|
if n_bin == 0:
|
|
|
|
|
|
continue
|
|
|
|
|
|
|
|
|
|
|
|
rec_idx_bin = np.flatnonzero(m_rec).astype(np.int32)
|
|
|
|
|
|
|
|
|
|
|
|
# Filter events to this bin's records once.
|
|
|
|
|
|
m_evt_bin = m_rec[evt_rec_idx] if evt_rec_idx.size > 0 else np.zeros(
|
|
|
|
|
|
(0,), dtype=bool)
|
|
|
|
|
|
evt_rec_idx_b = evt_rec_idx[m_evt_bin]
|
|
|
|
|
|
evt_cause_b = evt_cause[m_evt_bin]
|
|
|
|
|
|
evt_dt_b = evt_dt[m_evt_bin]
|
|
|
|
|
|
|
|
|
|
|
|
horizon_iter = enumerate(horizons)
|
|
|
|
|
|
if show_progress and tqdm is not None:
|
|
|
|
|
|
horizon_iter = tqdm(horizon_iter, total=len(
|
|
|
|
|
|
horizons), desc=f"Horizons {age_label}")
|
|
|
|
|
|
|
|
|
|
|
|
# Precompute a local index mapping for diagnostics label building.
|
|
|
|
|
|
local_map = np.full((N,), -1, dtype=np.int32)
|
|
|
|
|
|
local_map[rec_idx_bin] = np.arange(n_bin, dtype=np.int32)
|
|
|
|
|
|
|
|
|
|
|
|
for h_idx, tau in horizon_iter:
|
|
|
|
|
|
s_tau_all = scores[:, :, h_idx]
|
|
|
|
|
|
s_tau = s_tau_all[m_rec]
|
|
|
|
|
|
|
|
|
|
|
|
# -------------------------
|
|
|
|
|
|
# Primary metric: Top-K Event Capture@tau (event-count based)
|
|
|
|
|
|
# -------------------------
|
|
|
|
|
|
denom_events = int(np.sum(evt_dt_b <= float(tau))
|
|
|
|
|
|
) if evt_dt_b.size > 0 else 0
|
|
|
|
|
|
if denom_events == 0:
|
|
|
|
|
|
for topk in args.topk_list:
|
|
|
|
|
|
capture_rows.append(
|
|
|
|
|
|
{
|
|
|
|
|
|
"age_bin": age_label,
|
|
|
|
|
|
"tau_years": float(tau),
|
|
|
|
|
|
"topk": int(topk),
|
|
|
|
|
|
"capture_at_k": float("nan"),
|
|
|
|
|
|
"denom_events": int(0),
|
|
|
|
|
|
"numer_events": int(0),
|
|
|
|
|
|
"n_records": int(n_bin),
|
|
|
|
|
|
"n_causes": int(K),
|
|
|
|
|
|
}
|
|
|
|
|
|
)
|
|
|
|
|
|
else:
|
|
|
|
|
|
m_evt_tau = evt_dt_b <= float(tau)
|
|
|
|
|
|
evt_rec_idx_tau = evt_rec_idx_b[m_evt_tau]
|
|
|
|
|
|
evt_cause_tau = evt_cause_b[m_evt_tau]
|
|
|
|
|
|
|
|
|
|
|
|
# For each K, compute whether each event's cause is in that record's Top-K list.
|
|
|
|
|
|
for topk in args.topk_list:
|
|
|
|
|
|
topk = int(topk)
|
|
|
|
|
|
idx = topk_indices(s_tau_all, topk) # shape (N, topk)
|
|
|
|
|
|
idx_for_events = idx[evt_rec_idx_tau]
|
|
|
|
|
|
hits = (idx_for_events ==
|
|
|
|
|
|
evt_cause_tau[:, None]).any(axis=1)
|
|
|
|
|
|
numer_events = int(hits.sum())
|
|
|
|
|
|
capture = float(numer_events / denom_events)
|
|
|
|
|
|
capture_rows.append(
|
|
|
|
|
|
{
|
|
|
|
|
|
"age_bin": age_label,
|
|
|
|
|
|
"tau_years": float(tau),
|
|
|
|
|
|
"topk": int(topk),
|
|
|
|
|
|
"capture_at_k": capture,
|
|
|
|
|
|
"denom_events": int(denom_events),
|
|
|
|
|
|
"numer_events": int(numer_events),
|
|
|
|
|
|
"n_records": int(n_bin),
|
|
|
|
|
|
"n_causes": int(K),
|
|
|
|
|
|
}
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
# -------------------------
|
|
|
|
|
|
# Primary metric: Workload–Yield (Top-p% people)
|
|
|
|
|
|
# -------------------------
|
|
|
|
|
|
# Person-level score: max_k CIF_k(tau). This is used only for workload–yield ranking.
|
|
|
|
|
|
person_score = s_tau.max(axis=1) if K > 0 else np.zeros(
|
|
|
|
|
|
(n_bin,), dtype=np.float64)
|
|
|
|
|
|
order = np.argsort(-person_score, kind="mergesort")
|
|
|
|
|
|
|
|
|
|
|
|
counts_per_record = _event_counts_within_tau(
|
|
|
|
|
|
n_bin, local_map[evt_rec_idx_b], evt_dt_b, tau)
|
|
|
|
|
|
total_events = int(counts_per_record.sum())
|
|
|
|
|
|
overall_events_per_person = (
|
|
|
|
|
|
total_events / float(n_bin)) if n_bin > 0 else float("nan")
|
|
|
|
|
|
|
|
|
|
|
|
for frac in args.workload_fracs:
|
|
|
|
|
|
frac = float(frac)
|
|
|
|
|
|
if frac <= 0.0:
|
|
|
|
|
|
continue
|
|
|
|
|
|
n_sel = int(math.ceil(frac * n_bin))
|
|
|
|
|
|
n_sel = min(max(n_sel, 1), n_bin)
|
|
|
|
|
|
sel_local = order[:n_sel]
|
|
|
|
|
|
events_captured = int(counts_per_record[sel_local].sum())
|
|
|
|
|
|
capture_rate = float(
|
|
|
|
|
|
events_captured / total_events) if total_events > 0 else float("nan")
|
|
|
|
|
|
|
|
|
|
|
|
selected_events_per_person = (
|
|
|
|
|
|
events_captured / float(n_sel)) if n_sel > 0 else float("nan")
|
|
|
|
|
|
lift = (selected_events_per_person /
|
|
|
|
|
|
overall_events_per_person) if overall_events_per_person > 0 else float("nan")
|
|
|
|
|
|
|
|
|
|
|
|
workload_rows.append(
|
|
|
|
|
|
{
|
|
|
|
|
|
"age_bin": age_label,
|
|
|
|
|
|
"tau_years": float(tau),
|
|
|
|
|
|
"frac_selected": float(frac),
|
|
|
|
|
|
"n_selected": int(n_sel),
|
|
|
|
|
|
"n_records": int(n_bin),
|
|
|
|
|
|
"total_events": int(total_events),
|
|
|
|
|
|
"events_captured": int(events_captured),
|
|
|
|
|
|
"capture_rate": capture_rate,
|
|
|
|
|
|
"lift_events_per_person": float(lift),
|
|
|
|
|
|
"person_score_def": "max_k_CIF_k(tau)",
|
|
|
|
|
|
}
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
# -------------------------
|
|
|
|
|
|
# Diagnostics (optional): approximate event-driven AUC/Brier
|
|
|
|
|
|
# -------------------------
|
|
|
|
|
|
# Convert event-level data to binary labels y[i,k]=1 iff >=1 event of cause k within tau.
|
|
|
|
|
|
y_tau_bin = np.zeros((n_bin, K), dtype=np.int8)
|
|
|
|
|
|
if evt_dt_b.size > 0:
|
|
|
|
|
|
m_evt_tau = evt_dt_b <= float(tau)
|
|
|
|
|
|
if np.any(m_evt_tau):
|
|
|
|
|
|
rec_local = local_map[evt_rec_idx_b[m_evt_tau]]
|
|
|
|
|
|
valid = rec_local >= 0
|
|
|
|
|
|
y_tau_bin[rec_local[valid],
|
|
|
|
|
|
evt_cause_b[m_evt_tau][valid]] = 1
|
|
|
|
|
|
|
|
|
|
|
|
n_pos = y_tau_bin.sum(axis=0).astype(np.int64)
|
|
|
|
|
|
n_neg = (int(n_bin) - n_pos).astype(np.int64)
|
|
|
|
|
|
|
|
|
|
|
|
brier_per_cause = np.mean(
|
|
|
|
|
|
(y_tau_bin.astype(np.float64) - s_tau.astype(np.float64)) ** 2, axis=0
|
2026-01-17 13:49:39 +08:00
|
|
|
|
)
|
2026-01-17 15:31:12 +08:00
|
|
|
|
brier_macro = float(np.mean(brier_per_cause)
|
|
|
|
|
|
) if K > 0 else float("nan")
|
|
|
|
|
|
brier_weighted = float(np.sum(
|
|
|
|
|
|
brier_per_cause * n_pos) / np.sum(n_pos)) if np.sum(n_pos) > 0 else float("nan")
|
|
|
|
|
|
|
|
|
|
|
|
auc = np.full((K,), np.nan, dtype=np.float64)
|
|
|
|
|
|
min_pos = int(args.min_pos)
|
|
|
|
|
|
candidates = np.flatnonzero((n_pos >= min_pos) & (n_neg > 0))
|
|
|
|
|
|
for k in candidates:
|
|
|
|
|
|
auc[k] = roc_auc_ovr(y_tau_bin[:, k].astype(
|
|
|
|
|
|
np.int32), s_tau[:, k].astype(np.float64))
|
|
|
|
|
|
|
|
|
|
|
|
finite_auc = auc[np.isfinite(auc)]
|
|
|
|
|
|
auc_macro = float(np.mean(finite_auc)
|
|
|
|
|
|
) if finite_auc.size > 0 else float("nan")
|
|
|
|
|
|
w_mask = np.isfinite(auc)
|
|
|
|
|
|
auc_weighted = float(np.sum(auc[w_mask] * n_pos[w_mask]) / np.sum(
|
|
|
|
|
|
n_pos[w_mask])) if np.sum(n_pos[w_mask]) > 0 else float("nan")
|
|
|
|
|
|
n_valid_auc = int(np.isfinite(auc).sum())
|
|
|
|
|
|
|
|
|
|
|
|
diag_rows.append(
|
2026-01-17 13:49:39 +08:00
|
|
|
|
{
|
2026-01-17 15:31:12 +08:00
|
|
|
|
"age_bin": age_label,
|
2026-01-17 13:49:39 +08:00
|
|
|
|
"tau_years": float(tau),
|
2026-01-17 15:31:12 +08:00
|
|
|
|
"n_records": int(n_bin),
|
|
|
|
|
|
"n_causes": int(K),
|
|
|
|
|
|
"auc_macro": auc_macro,
|
|
|
|
|
|
"auc_weighted_by_npos": auc_weighted,
|
|
|
|
|
|
"n_causes_valid_auc": int(n_valid_auc),
|
|
|
|
|
|
"brier_macro": brier_macro,
|
|
|
|
|
|
"brier_weighted_by_npos": brier_weighted,
|
2026-01-17 13:49:39 +08:00
|
|
|
|
}
|
|
|
|
|
|
)
|
|
|
|
|
|
|
2026-01-17 15:31:12 +08:00
|
|
|
|
diag_per_cause_parts.append(
|
|
|
|
|
|
pd.DataFrame(
|
|
|
|
|
|
{
|
|
|
|
|
|
"age_bin": age_label,
|
|
|
|
|
|
"tau_years": float(tau),
|
|
|
|
|
|
"cause_id": np.arange(K, dtype=np.int64),
|
|
|
|
|
|
"n_pos": n_pos,
|
|
|
|
|
|
"n_neg": n_neg,
|
|
|
|
|
|
"auc": auc,
|
|
|
|
|
|
"brier": brier_per_cause,
|
|
|
|
|
|
}
|
|
|
|
|
|
)
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
out_capture = os.path.join(run_dir, "horizon_capture.csv")
|
2026-01-17 13:49:39 +08:00
|
|
|
|
out_wy = os.path.join(run_dir, "workload_yield.csv")
|
2026-01-17 15:31:12 +08:00
|
|
|
|
out_diag = os.path.join(run_dir, "horizon_metrics.csv")
|
|
|
|
|
|
out_diag_pc = os.path.join(run_dir, "horizon_per_cause.csv")
|
2026-01-17 13:49:39 +08:00
|
|
|
|
|
2026-01-17 15:31:12 +08:00
|
|
|
|
pd.DataFrame(capture_rows).to_csv(out_capture, index=False)
|
2026-01-17 13:49:39 +08:00
|
|
|
|
pd.DataFrame(workload_rows).to_csv(out_wy, index=False)
|
2026-01-17 15:31:12 +08:00
|
|
|
|
pd.DataFrame(diag_rows).to_csv(out_diag, index=False)
|
|
|
|
|
|
if diag_per_cause_parts:
|
|
|
|
|
|
pd.concat(diag_per_cause_parts, ignore_index=True).to_csv(
|
|
|
|
|
|
out_diag_pc, index=False)
|
|
|
|
|
|
else:
|
|
|
|
|
|
pd.DataFrame(columns=["age_bin", "tau_years", "cause_id", "n_pos",
|
|
|
|
|
|
"n_neg", "auc", "brier"]).to_csv(out_diag_pc, index=False)
|
2026-01-17 13:49:39 +08:00
|
|
|
|
|
2026-01-17 15:31:12 +08:00
|
|
|
|
print(f"Wrote {out_capture}")
|
2026-01-17 13:49:39 +08:00
|
|
|
|
print(f"Wrote {out_wy}")
|
2026-01-17 15:31:12 +08:00
|
|
|
|
print(f"Wrote {out_diag} (diagnostic-only)")
|
|
|
|
|
|
print(f"Wrote {out_diag_pc} (diagnostic-only)")
|
2026-01-17 13:49:39 +08:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
|
main()
|