470 lines
17 KiB
Python
470 lines
17 KiB
Python
|
|
from __future__ import annotations
|
|||
|
|
|
|||
|
|
import math
|
|||
|
|
from dataclasses import dataclass
|
|||
|
|
from typing import Dict, List, Optional, Sequence, Tuple
|
|||
|
|
|
|||
|
|
import numpy as np
|
|||
|
|
import pandas as pd
|
|||
|
|
import torch
|
|||
|
|
|
|||
|
|
try:
|
|||
|
|
from tqdm import tqdm
|
|||
|
|
except Exception: # pragma: no cover
|
|||
|
|
|
|||
|
|
def tqdm(x, **kwargs):
|
|||
|
|
return x
|
|||
|
|
|
|||
|
|
from utils import (
|
|||
|
|
multi_hot_ever_within_horizon,
|
|||
|
|
multi_hot_selected_causes_within_horizon,
|
|||
|
|
sample_context_in_fixed_age_bin,
|
|||
|
|
)
|
|||
|
|
|
|||
|
|
|
|||
|
|
def _binary_roc_auc(y_true: np.ndarray, y_score: np.ndarray) -> float:
|
|||
|
|
"""Compute ROC AUC for binary labels with tie-aware ranking.
|
|||
|
|
|
|||
|
|
Returns NaN if y_true has no positives or no negatives.
|
|||
|
|
|
|||
|
|
Uses the Mann–Whitney U statistic with average ranks for ties.
|
|||
|
|
"""
|
|||
|
|
y_true = np.asarray(y_true).astype(bool)
|
|||
|
|
y_score = np.asarray(y_score).astype(float)
|
|||
|
|
|
|||
|
|
n = y_true.size
|
|||
|
|
if n == 0:
|
|||
|
|
return float("nan")
|
|||
|
|
|
|||
|
|
n_pos = int(y_true.sum())
|
|||
|
|
n_neg = n - n_pos
|
|||
|
|
if n_pos == 0 or n_neg == 0:
|
|||
|
|
return float("nan")
|
|||
|
|
|
|||
|
|
# Rank scores ascending, average ranks for ties.
|
|||
|
|
order = np.argsort(y_score, kind="mergesort")
|
|||
|
|
sorted_scores = y_score[order]
|
|||
|
|
|
|||
|
|
ranks = np.empty(n, dtype=float)
|
|||
|
|
i = 0
|
|||
|
|
# 1-based ranks
|
|||
|
|
while i < n:
|
|||
|
|
j = i + 1
|
|||
|
|
while j < n and sorted_scores[j] == sorted_scores[i]:
|
|||
|
|
j += 1
|
|||
|
|
avg_rank = 0.5 * ((i + 1) + j) # ranks i+1 .. j
|
|||
|
|
ranks[order[i:j]] = avg_rank
|
|||
|
|
i = j
|
|||
|
|
|
|||
|
|
sum_ranks_pos = float(ranks[y_true].sum())
|
|||
|
|
u = sum_ranks_pos - (n_pos * (n_pos + 1) / 2.0)
|
|||
|
|
return float(u / (n_pos * n_neg))
|
|||
|
|
|
|||
|
|
|
|||
|
|
def _average_precision(y_true: np.ndarray, y_score: np.ndarray) -> float:
|
|||
|
|
"""Average precision (area under PR curve using step-wise interpolation).
|
|||
|
|
|
|||
|
|
Returns NaN if no positives.
|
|||
|
|
"""
|
|||
|
|
y_true = np.asarray(y_true).astype(bool)
|
|||
|
|
y_score = np.asarray(y_score).astype(float)
|
|||
|
|
|
|||
|
|
n = y_true.size
|
|||
|
|
if n == 0:
|
|||
|
|
return float("nan")
|
|||
|
|
|
|||
|
|
n_pos = int(y_true.sum())
|
|||
|
|
if n_pos == 0:
|
|||
|
|
return float("nan")
|
|||
|
|
|
|||
|
|
order = np.argsort(-y_score, kind="mergesort")
|
|||
|
|
y = y_true[order]
|
|||
|
|
|
|||
|
|
tp = np.cumsum(y).astype(float)
|
|||
|
|
fp = np.cumsum(~y).astype(float)
|
|||
|
|
precision = tp / np.maximum(tp + fp, 1.0)
|
|||
|
|
|
|||
|
|
# AP = sum over each positive of precision at that point / n_pos
|
|||
|
|
# (equivalent to ∑ Δrecall * precision)
|
|||
|
|
ap = float(np.sum(precision[y]) / n_pos)
|
|||
|
|
# handle potential tiny numerical overshoots
|
|||
|
|
return float(max(0.0, min(1.0, ap)))
|
|||
|
|
|
|||
|
|
|
|||
|
|
def _precision_recall_at_k_percent(
|
|||
|
|
y_true: np.ndarray,
|
|||
|
|
y_score: np.ndarray,
|
|||
|
|
k_percent: float,
|
|||
|
|
) -> Tuple[float, float]:
|
|||
|
|
"""Precision@K% and Recall@K% for binary labels.
|
|||
|
|
|
|||
|
|
Returns (precision, recall). Returns NaN for recall if no positives.
|
|||
|
|
Returns NaN for precision if k leads to 0 selected.
|
|||
|
|
"""
|
|||
|
|
y_true = np.asarray(y_true).astype(bool)
|
|||
|
|
y_score = np.asarray(y_score).astype(float)
|
|||
|
|
|
|||
|
|
n = y_true.size
|
|||
|
|
if n == 0:
|
|||
|
|
return float("nan"), float("nan")
|
|||
|
|
|
|||
|
|
n_pos = int(y_true.sum())
|
|||
|
|
|
|||
|
|
k = int(math.ceil((float(k_percent) / 100.0) * n))
|
|||
|
|
if k <= 0:
|
|||
|
|
return float("nan"), float("nan")
|
|||
|
|
|
|||
|
|
order = np.argsort(-y_score, kind="mergesort")
|
|||
|
|
top = order[:k]
|
|||
|
|
tp_top = int(y_true[top].sum())
|
|||
|
|
|
|||
|
|
precision = tp_top / k
|
|||
|
|
recall = float("nan") if n_pos == 0 else (tp_top / n_pos)
|
|||
|
|
return float(precision), float(recall)
|
|||
|
|
|
|||
|
|
|
|||
|
|
@dataclass
|
|||
|
|
class EvalAgeConfig:
|
|||
|
|
horizons_years: Sequence[float]
|
|||
|
|
age_bins: Sequence[Tuple[float, float]]
|
|||
|
|
topk_percents: Sequence[float] = (1.0, 5.0, 10.0, 20.0, 50.0)
|
|||
|
|
n_mc: int = 5
|
|||
|
|
seed: int = 0
|
|||
|
|
cause_ids: Optional[Sequence[int]] = None
|
|||
|
|
|
|||
|
|
|
|||
|
|
@torch.no_grad()
|
|||
|
|
def evaluate_time_dependent_age_bins(
|
|||
|
|
model: torch.nn.Module,
|
|||
|
|
head: torch.nn.Module,
|
|||
|
|
criterion,
|
|||
|
|
dataloader: torch.utils.data.DataLoader,
|
|||
|
|
n_disease: int,
|
|||
|
|
cfg: EvalAgeConfig,
|
|||
|
|
device: str | torch.device,
|
|||
|
|
) -> Tuple[pd.DataFrame, pd.DataFrame]:
|
|||
|
|
"""Delphi-2M-style age-bin evaluation with strict horizon alignment.
|
|||
|
|
|
|||
|
|
Semantics (strict): for each (MC, horizon tau, age bin) we independently:
|
|||
|
|
- build the eligible token set within that bin
|
|||
|
|
- enforce follow-up coverage: t_ctx + tau <= t_end
|
|||
|
|
- randomly sample exactly one token per individual within the bin (de-dup)
|
|||
|
|
- recompute context representations and predictions for that (tau, bin)
|
|||
|
|
|
|||
|
|
Returns:
|
|||
|
|
df_by_bin: rows keyed by (mc_idx, age_bin_id, horizon_tau, topk_percent, cause_id)
|
|||
|
|
df_agg: aggregated metrics across age bins and MC with agg_type in {macro, weighted}
|
|||
|
|
"""
|
|||
|
|
device = torch.device(device)
|
|||
|
|
model.eval()
|
|||
|
|
head.eval()
|
|||
|
|
|
|||
|
|
horizons_years = [float(x) for x in cfg.horizons_years]
|
|||
|
|
if len(horizons_years) == 0:
|
|||
|
|
raise ValueError("cfg.horizons_years must be non-empty")
|
|||
|
|
|
|||
|
|
age_bins = [(float(a), float(b)) for (a, b) in cfg.age_bins]
|
|||
|
|
if len(age_bins) == 0:
|
|||
|
|
raise ValueError("cfg.age_bins must be non-empty")
|
|||
|
|
for (a, b) in age_bins:
|
|||
|
|
if not (b > a):
|
|||
|
|
raise ValueError(
|
|||
|
|
f"age_bins must be (low, high) with high>low; got {(a, b)}")
|
|||
|
|
|
|||
|
|
topk_percents = [float(x) for x in cfg.topk_percents]
|
|||
|
|
if len(topk_percents) == 0:
|
|||
|
|
raise ValueError("cfg.topk_percents must be non-empty")
|
|||
|
|
if any((p <= 0.0 or p > 100.0) for p in topk_percents):
|
|||
|
|
raise ValueError(
|
|||
|
|
f"All topk_percents must be in (0,100]; got {topk_percents}")
|
|||
|
|
|
|||
|
|
if int(cfg.n_mc) <= 0:
|
|||
|
|
raise ValueError("cfg.n_mc must be >= 1")
|
|||
|
|
|
|||
|
|
if cfg.cause_ids is None:
|
|||
|
|
cause_ids = None
|
|||
|
|
n_causes_eval = int(n_disease)
|
|||
|
|
else:
|
|||
|
|
cause_ids = torch.tensor(
|
|||
|
|
list(cfg.cause_ids), dtype=torch.long, device=device)
|
|||
|
|
n_causes_eval = int(cause_ids.numel())
|
|||
|
|
|
|||
|
|
# Storage: (mc, h, bin) -> list of arrays
|
|||
|
|
y_true: List[List[List[List[np.ndarray]]]] = [
|
|||
|
|
[[[] for _ in range(len(age_bins))] for _ in range(len(horizons_years))]
|
|||
|
|
for _ in range(int(cfg.n_mc))
|
|||
|
|
]
|
|||
|
|
y_pred: List[List[List[List[np.ndarray]]]] = [
|
|||
|
|
[[[] for _ in range(len(age_bins))] for _ in range(len(horizons_years))]
|
|||
|
|
for _ in range(int(cfg.n_mc))
|
|||
|
|
]
|
|||
|
|
|
|||
|
|
for mc_idx in range(int(cfg.n_mc)):
|
|||
|
|
# tqdm over batches; include MC idx in description.
|
|||
|
|
for batch_idx, batch in enumerate(
|
|||
|
|
tqdm(dataloader,
|
|||
|
|
desc=f"Evaluating (MC {mc_idx+1}/{cfg.n_mc})", unit="batch")
|
|||
|
|
):
|
|||
|
|
event_seq, time_seq, cont_feats, cate_feats, sexes = batch
|
|||
|
|
event_seq = event_seq.to(device)
|
|||
|
|
time_seq = time_seq.to(device)
|
|||
|
|
cont_feats = cont_feats.to(device)
|
|||
|
|
cate_feats = cate_feats.to(device)
|
|||
|
|
sexes = sexes.to(device)
|
|||
|
|
|
|||
|
|
B = int(event_seq.size(0))
|
|||
|
|
b = torch.arange(B, device=device)
|
|||
|
|
|
|||
|
|
for tau_idx, tau_y in enumerate(horizons_years):
|
|||
|
|
for bin_idx, (a_lo, a_hi) in enumerate(age_bins):
|
|||
|
|
# Diversify RNG stream across MC/tau/bin/batch to reduce correlation.
|
|||
|
|
seed = (
|
|||
|
|
int(cfg.seed)
|
|||
|
|
+ (100_000 * int(mc_idx))
|
|||
|
|
+ (1_000 * int(tau_idx))
|
|||
|
|
+ (10 * int(bin_idx))
|
|||
|
|
+ int(batch_idx)
|
|||
|
|
)
|
|||
|
|
|
|||
|
|
keep, t_ctx = sample_context_in_fixed_age_bin(
|
|||
|
|
event_seq=event_seq,
|
|||
|
|
time_seq=time_seq,
|
|||
|
|
tau_years=float(tau_y),
|
|||
|
|
age_bin=(float(a_lo), float(a_hi)),
|
|||
|
|
seed=seed,
|
|||
|
|
)
|
|||
|
|
if not keep.any():
|
|||
|
|
continue
|
|||
|
|
|
|||
|
|
# Strict bin-specific prediction: recompute representations and logits per (tau, bin).
|
|||
|
|
h = model(event_seq, time_seq, sexes,
|
|||
|
|
cont_feats, cate_feats) # (B,L,D)
|
|||
|
|
c = h[b, t_ctx]
|
|||
|
|
logits = head(c)
|
|||
|
|
|
|||
|
|
cifs = criterion.calculate_cifs(
|
|||
|
|
logits, taus=torch.tensor(float(tau_y), device=device)
|
|||
|
|
)
|
|||
|
|
if cifs.ndim != 2:
|
|||
|
|
raise ValueError(
|
|||
|
|
"criterion.calculate_cifs must return (B,K) for scalar tau; "
|
|||
|
|
f"got shape={tuple(cifs.shape)}"
|
|||
|
|
)
|
|||
|
|
|
|||
|
|
if cause_ids is None:
|
|||
|
|
y = multi_hot_ever_within_horizon(
|
|||
|
|
event_seq=event_seq,
|
|||
|
|
time_seq=time_seq,
|
|||
|
|
t_ctx=t_ctx,
|
|||
|
|
tau_years=float(tau_y),
|
|||
|
|
n_disease=n_disease,
|
|||
|
|
)
|
|||
|
|
preds = cifs
|
|||
|
|
else:
|
|||
|
|
y = multi_hot_selected_causes_within_horizon(
|
|||
|
|
event_seq=event_seq,
|
|||
|
|
time_seq=time_seq,
|
|||
|
|
t_ctx=t_ctx,
|
|||
|
|
tau_years=float(tau_y),
|
|||
|
|
cause_ids=cause_ids,
|
|||
|
|
n_disease=n_disease,
|
|||
|
|
)
|
|||
|
|
preds = cifs.index_select(dim=1, index=cause_ids)
|
|||
|
|
|
|||
|
|
y_true[mc_idx][tau_idx][bin_idx].append(
|
|||
|
|
y[keep].detach().to(torch.bool).cpu().numpy()
|
|||
|
|
)
|
|||
|
|
y_pred[mc_idx][tau_idx][bin_idx].append(
|
|||
|
|
preds[keep].detach().to(torch.float32).cpu().numpy()
|
|||
|
|
)
|
|||
|
|
|
|||
|
|
rows_by_bin: List[Dict[str, float | int]] = []
|
|||
|
|
|
|||
|
|
for mc_idx in range(int(cfg.n_mc)):
|
|||
|
|
for h_idx, tau_y in enumerate(horizons_years):
|
|||
|
|
for bin_idx, (a_lo, a_hi) in enumerate(age_bins):
|
|||
|
|
if len(y_true[mc_idx][h_idx][bin_idx]) == 0:
|
|||
|
|
# No samples in this bin for this (mc, tau)
|
|||
|
|
for cause_k in range(n_causes_eval):
|
|||
|
|
cause_id = int(cause_k) if cause_ids is None else int(
|
|||
|
|
cfg.cause_ids[cause_k])
|
|||
|
|
for k_percent in topk_percents:
|
|||
|
|
rows_by_bin.append(
|
|||
|
|
dict(
|
|||
|
|
mc_idx=mc_idx,
|
|||
|
|
age_bin_id=bin_idx,
|
|||
|
|
age_bin_low=float(a_lo),
|
|||
|
|
age_bin_high=float(a_hi),
|
|||
|
|
horizon_tau=float(tau_y),
|
|||
|
|
topk_percent=float(k_percent),
|
|||
|
|
cause_id=cause_id,
|
|||
|
|
n_samples=0,
|
|||
|
|
n_positives=0,
|
|||
|
|
auc=float("nan"),
|
|||
|
|
auprc=float("nan"),
|
|||
|
|
recall_at_K=float("nan"),
|
|||
|
|
precision_at_K=float("nan"),
|
|||
|
|
brier_score=float("nan"),
|
|||
|
|
)
|
|||
|
|
)
|
|||
|
|
continue
|
|||
|
|
|
|||
|
|
yb = np.concatenate(y_true[mc_idx][h_idx][bin_idx], axis=0)
|
|||
|
|
pb = np.concatenate(y_pred[mc_idx][h_idx][bin_idx], axis=0)
|
|||
|
|
if yb.shape != pb.shape:
|
|||
|
|
raise ValueError(
|
|||
|
|
f"Shape mismatch mc={mc_idx} tau={tau_y} bin={bin_idx}: y{tuple(yb.shape)} vs p{tuple(pb.shape)}"
|
|||
|
|
)
|
|||
|
|
|
|||
|
|
n_samples = int(yb.shape[0])
|
|||
|
|
|
|||
|
|
for cause_k in range(n_causes_eval):
|
|||
|
|
yk = yb[:, cause_k]
|
|||
|
|
pk = pb[:, cause_k]
|
|||
|
|
n_pos = int(yk.sum())
|
|||
|
|
|
|||
|
|
auc = _binary_roc_auc(yk, pk)
|
|||
|
|
auprc = _average_precision(yk, pk)
|
|||
|
|
brier = float(np.mean(
|
|||
|
|
(yk.astype(float) - pk.astype(float)) ** 2)) if n_samples > 0 else float("nan")
|
|||
|
|
|
|||
|
|
cause_id = int(cause_k) if cause_ids is None else int(
|
|||
|
|
cfg.cause_ids[cause_k])
|
|||
|
|
|
|||
|
|
for k_percent in topk_percents:
|
|||
|
|
precision_k, recall_k = _precision_recall_at_k_percent(
|
|||
|
|
yk, pk, float(k_percent))
|
|||
|
|
rows_by_bin.append(
|
|||
|
|
dict(
|
|||
|
|
mc_idx=mc_idx,
|
|||
|
|
age_bin_id=bin_idx,
|
|||
|
|
age_bin_low=float(a_lo),
|
|||
|
|
age_bin_high=float(a_hi),
|
|||
|
|
horizon_tau=float(tau_y),
|
|||
|
|
topk_percent=float(k_percent),
|
|||
|
|
cause_id=cause_id,
|
|||
|
|
n_samples=n_samples,
|
|||
|
|
n_positives=n_pos,
|
|||
|
|
auc=float(auc),
|
|||
|
|
auprc=float(auprc),
|
|||
|
|
recall_at_K=float(recall_k),
|
|||
|
|
precision_at_K=float(precision_k),
|
|||
|
|
brier_score=float(brier),
|
|||
|
|
)
|
|||
|
|
)
|
|||
|
|
|
|||
|
|
df_by_bin = pd.DataFrame(rows_by_bin)
|
|||
|
|
|
|||
|
|
def _bin_aggregate(group: pd.DataFrame, *, weighted: bool) -> pd.Series:
|
|||
|
|
g = group[group["n_samples"] > 0]
|
|||
|
|
if len(g) == 0:
|
|||
|
|
return pd.Series(
|
|||
|
|
dict(
|
|||
|
|
n_bins_used=0,
|
|||
|
|
n_samples_total=0,
|
|||
|
|
n_positives_total=0,
|
|||
|
|
auc=float("nan"),
|
|||
|
|
auprc=float("nan"),
|
|||
|
|
recall_at_K=float("nan"),
|
|||
|
|
precision_at_K=float("nan"),
|
|||
|
|
brier_score=float("nan"),
|
|||
|
|
)
|
|||
|
|
)
|
|||
|
|
|
|||
|
|
n_bins_used = int(g["age_bin_id"].nunique())
|
|||
|
|
n_samples_total = int(g["n_samples"].sum())
|
|||
|
|
n_positives_total = int(g["n_positives"].sum())
|
|||
|
|
|
|||
|
|
if not weighted:
|
|||
|
|
return pd.Series(
|
|||
|
|
dict(
|
|||
|
|
n_bins_used=n_bins_used,
|
|||
|
|
n_samples_total=n_samples_total,
|
|||
|
|
n_positives_total=n_positives_total,
|
|||
|
|
auc=float(g["auc"].mean()),
|
|||
|
|
auprc=float(g["auprc"].mean()),
|
|||
|
|
recall_at_K=float(g["recall_at_K"].mean()),
|
|||
|
|
precision_at_K=float(g["precision_at_K"].mean()),
|
|||
|
|
brier_score=float(g["brier_score"].mean()),
|
|||
|
|
)
|
|||
|
|
)
|
|||
|
|
|
|||
|
|
w = g["n_samples"].to_numpy(dtype=float)
|
|||
|
|
w_sum = float(w.sum())
|
|||
|
|
if w_sum <= 0.0:
|
|||
|
|
return pd.Series(
|
|||
|
|
dict(
|
|||
|
|
n_bins_used=n_bins_used,
|
|||
|
|
n_samples_total=n_samples_total,
|
|||
|
|
n_positives_total=n_positives_total,
|
|||
|
|
auc=float("nan"),
|
|||
|
|
auprc=float("nan"),
|
|||
|
|
recall_at_K=float("nan"),
|
|||
|
|
precision_at_K=float("nan"),
|
|||
|
|
brier_score=float("nan"),
|
|||
|
|
)
|
|||
|
|
)
|
|||
|
|
|
|||
|
|
def _wavg(col: str) -> float:
|
|||
|
|
return float(np.average(g[col].to_numpy(dtype=float), weights=w))
|
|||
|
|
|
|||
|
|
return pd.Series(
|
|||
|
|
dict(
|
|||
|
|
n_bins_used=n_bins_used,
|
|||
|
|
n_samples_total=n_samples_total,
|
|||
|
|
n_positives_total=n_positives_total,
|
|||
|
|
auc=_wavg("auc"),
|
|||
|
|
auprc=_wavg("auprc"),
|
|||
|
|
recall_at_K=_wavg("recall_at_K"),
|
|||
|
|
precision_at_K=_wavg("precision_at_K"),
|
|||
|
|
brier_score=_wavg("brier_score"),
|
|||
|
|
)
|
|||
|
|
)
|
|||
|
|
|
|||
|
|
group_keys = ["mc_idx", "horizon_tau", "topk_percent", "cause_id"]
|
|||
|
|
|
|||
|
|
df_mc_macro = (
|
|||
|
|
df_by_bin.groupby(group_keys)
|
|||
|
|
.apply(lambda g: _bin_aggregate(g, weighted=False))
|
|||
|
|
.reset_index()
|
|||
|
|
)
|
|||
|
|
df_mc_macro["agg_type"] = "macro"
|
|||
|
|
|
|||
|
|
df_mc_weighted = (
|
|||
|
|
df_by_bin.groupby(group_keys)
|
|||
|
|
.apply(lambda g: _bin_aggregate(g, weighted=True))
|
|||
|
|
.reset_index()
|
|||
|
|
)
|
|||
|
|
df_mc_weighted["agg_type"] = "weighted"
|
|||
|
|
|
|||
|
|
df_mc_binagg = pd.concat([df_mc_macro, df_mc_weighted], ignore_index=True)
|
|||
|
|
|
|||
|
|
# Then average over MC repetitions.
|
|||
|
|
df_agg = (
|
|||
|
|
df_mc_binagg.groupby(
|
|||
|
|
["agg_type", "horizon_tau", "topk_percent", "cause_id"], as_index=False
|
|||
|
|
)
|
|||
|
|
.agg(
|
|||
|
|
n_mc=("mc_idx", "nunique"),
|
|||
|
|
n_bins_used_mean=("n_bins_used", "mean"),
|
|||
|
|
n_samples_total_mean=("n_samples_total", "mean"),
|
|||
|
|
n_positives_total_mean=("n_positives_total", "mean"),
|
|||
|
|
auc_mean=("auc", "mean"),
|
|||
|
|
auc_std=("auc", "std"),
|
|||
|
|
auprc_mean=("auprc", "mean"),
|
|||
|
|
auprc_std=("auprc", "std"),
|
|||
|
|
recall_at_K_mean=("recall_at_K", "mean"),
|
|||
|
|
recall_at_K_std=("recall_at_K", "std"),
|
|||
|
|
precision_at_K_mean=("precision_at_K", "mean"),
|
|||
|
|
precision_at_K_std=("precision_at_K", "std"),
|
|||
|
|
brier_score_mean=("brier_score", "mean"),
|
|||
|
|
brier_score_std=("brier_score", "std"),
|
|||
|
|
)
|
|||
|
|
.sort_values(
|
|||
|
|
["agg_type", "horizon_tau", "topk_percent", "cause_id"],
|
|||
|
|
ignore_index=True,
|
|||
|
|
)
|
|||
|
|
)
|
|||
|
|
|
|||
|
|
return df_by_bin, df_agg
|