Files
DeepHealth/evaluation_time_dependent.py

323 lines
10 KiB
Python
Raw Normal View History

from __future__ import annotations
import math
from dataclasses import dataclass
from typing import Dict, List, Optional, Sequence, Tuple
import numpy as np
import pandas as pd
import torch
from utils import (
DAYS_PER_YEAR,
multi_hot_ever_within_horizon,
multi_hot_selected_causes_within_horizon,
select_context_indices,
)
def _binary_roc_auc(y_true: np.ndarray, y_score: np.ndarray) -> float:
"""Compute ROC AUC for binary labels with tie-aware ranking.
Returns NaN if y_true has no positives or no negatives.
Uses the MannWhitney U statistic with average ranks for ties.
"""
y_true = np.asarray(y_true).astype(bool)
y_score = np.asarray(y_score).astype(float)
n = y_true.size
if n == 0:
return float("nan")
n_pos = int(y_true.sum())
n_neg = n - n_pos
if n_pos == 0 or n_neg == 0:
return float("nan")
# Rank scores ascending, average ranks for ties.
order = np.argsort(y_score, kind="mergesort")
sorted_scores = y_score[order]
ranks = np.empty(n, dtype=float)
i = 0
# 1-based ranks
while i < n:
j = i + 1
while j < n and sorted_scores[j] == sorted_scores[i]:
j += 1
avg_rank = 0.5 * ((i + 1) + j) # ranks i+1 .. j
ranks[order[i:j]] = avg_rank
i = j
sum_ranks_pos = float(ranks[y_true].sum())
u = sum_ranks_pos - (n_pos * (n_pos + 1) / 2.0)
return float(u / (n_pos * n_neg))
def _average_precision(y_true: np.ndarray, y_score: np.ndarray) -> float:
"""Average precision (area under PR curve using step-wise interpolation).
Returns NaN if no positives.
"""
y_true = np.asarray(y_true).astype(bool)
y_score = np.asarray(y_score).astype(float)
n = y_true.size
if n == 0:
return float("nan")
n_pos = int(y_true.sum())
if n_pos == 0:
return float("nan")
order = np.argsort(-y_score, kind="mergesort")
y = y_true[order]
tp = np.cumsum(y).astype(float)
fp = np.cumsum(~y).astype(float)
precision = tp / np.maximum(tp + fp, 1.0)
recall = tp / n_pos
# AP = sum over each positive of precision at that point / n_pos
# (equivalent to ∑ Δrecall * precision)
ap = float(np.sum(precision[y]) / n_pos)
# handle potential tiny numerical overshoots
return float(max(0.0, min(1.0, ap)))
def _precision_recall_at_k_percent(
y_true: np.ndarray,
y_score: np.ndarray,
k_percent: float,
) -> Tuple[float, float]:
"""Precision@K% and Recall@K% for binary labels.
Returns (precision, recall). Returns NaN for recall if no positives.
Returns NaN for precision if k leads to 0 selected.
"""
y_true = np.asarray(y_true).astype(bool)
y_score = np.asarray(y_score).astype(float)
n = y_true.size
if n == 0:
return float("nan"), float("nan")
n_pos = int(y_true.sum())
k = int(math.ceil((float(k_percent) / 100.0) * n))
if k <= 0:
return float("nan"), float("nan")
order = np.argsort(-y_score, kind="mergesort")
top = order[:k]
tp_top = int(y_true[top].sum())
precision = tp_top / k
recall = float("nan") if n_pos == 0 else (tp_top / n_pos)
return float(precision), float(recall)
@dataclass
class EvalConfig:
horizons_years: Sequence[float]
offset_years: float = 0.0
topk_percents: Sequence[float] = (1.0, 5.0, 10.0, 20.0, 50.0)
cause_ids: Optional[Sequence[int]] = None
@torch.no_grad()
def evaluate_time_dependent(
model: torch.nn.Module,
head: torch.nn.Module,
criterion,
dataloader: torch.utils.data.DataLoader,
n_disease: int,
cfg: EvalConfig,
device: str | torch.device,
) -> pd.DataFrame:
"""Evaluate time-dependent metrics per cause and per horizon.
Assumptions:
- time_seq is in days
- horizons_years and the loss CIF times are in years
- disease token ids in event_seq are >= 2 and map to cause_id = token_id - 2
Returns:
DataFrame with columns:
cause_id, horizon_tau, topk_percent, n_samples, n_positives, auc, auprc,
recall_at_K, precision_at_K, brier_score
"""
device = torch.device(device)
model.eval()
head.eval()
horizons_years = [float(x) for x in cfg.horizons_years]
if len(horizons_years) == 0:
raise ValueError("cfg.horizons_years must be non-empty")
topk_percents = [float(x) for x in cfg.topk_percents]
if len(topk_percents) == 0:
raise ValueError("cfg.topk_percents must be non-empty")
if any((p <= 0.0 or p > 100.0) for p in topk_percents):
raise ValueError(
f"All topk_percents must be in (0,100]; got {topk_percents}")
taus_tensor = torch.tensor(
horizons_years, device=device, dtype=torch.float32)
if cfg.cause_ids is None:
cause_ids = None
n_causes_eval = int(n_disease)
else:
cause_ids = torch.tensor(
list(cfg.cause_ids), dtype=torch.long, device=device)
n_causes_eval = int(cause_ids.numel())
# Accumulate per horizon
y_true_by_h: List[List[np.ndarray]] = [[] for _ in horizons_years]
y_pred_by_h: List[List[np.ndarray]] = [[] for _ in horizons_years]
for batch in dataloader:
event_seq, time_seq, cont_feats, cate_feats, sexes = batch
event_seq = event_seq.to(device)
time_seq = time_seq.to(device)
cont_feats = cont_feats.to(device)
cate_feats = cate_feats.to(device)
sexes = sexes.to(device)
h = model(event_seq, time_seq, sexes, cont_feats, cate_feats) # (B,L,D)
# Select a single fixed context per sample for this batch.
# Horizon-specific eligibility is derived from this context (do not re-select per horizon).
keep0, t_ctx, t_ctx_time = select_context_indices(
event_seq=event_seq,
time_seq=time_seq,
offset_years=float(cfg.offset_years),
tau_years=0.0,
)
if not keep0.any():
continue
b = torch.arange(event_seq.size(0), device=device)
c = h[b, t_ctx] # (B,D)
logits = head(c)
# CIFs for all horizons at once
cifs_all = criterion.calculate_cifs(
logits, taus=taus_tensor) # (B,K,T) or (B,K)
if cifs_all.ndim != 3:
raise ValueError(
f"criterion.calculate_cifs must return (B,K,T) when taus is (T,), got shape={tuple(cifs_all.shape)}"
)
# Follow-up end time per sample = time at last valid token.
valid = event_seq != 0
lengths = valid.sum(dim=1)
last_idx = torch.clamp(lengths - 1, min=0)
followup_end_time = time_seq[b, last_idx]
for h_idx, tau_y in enumerate(horizons_years):
# Horizon-specific eligibility without reselecting context:
# keep_tau = keep0 & (followup_end_time >= t_ctx_time + tau)
keep_tau = keep0 & (
followup_end_time >= (
t_ctx_time + (float(tau_y) * DAYS_PER_YEAR))
)
if not keep_tau.any():
continue
if cause_ids is None:
y = multi_hot_ever_within_horizon(
event_seq=event_seq,
time_seq=time_seq,
t_ctx=t_ctx,
tau_years=float(tau_y),
n_disease=n_disease,
)
y = y[keep_tau]
preds = cifs_all[keep_tau, :, h_idx]
else:
y = multi_hot_selected_causes_within_horizon(
event_seq=event_seq,
time_seq=time_seq,
t_ctx=t_ctx,
tau_years=float(tau_y),
cause_ids=cause_ids,
n_disease=n_disease,
)
y = y[keep_tau]
preds = cifs_all[keep_tau, :, h_idx].index_select(
dim=1, index=cause_ids)
y_true_by_h[h_idx].append(y.detach().to(torch.bool).cpu().numpy())
y_pred_by_h[h_idx].append(
preds.detach().to(torch.float32).cpu().numpy())
rows: List[Dict[str, float | int]] = []
for h_idx, tau_y in enumerate(horizons_years):
if len(y_true_by_h[h_idx]) == 0:
# No eligible samples for this horizon.
for k in range(n_causes_eval):
cause_id = int(k) if cause_ids is None else int(
cfg.cause_ids[k])
for k_percent in topk_percents:
rows.append(
dict(
cause_id=cause_id,
horizon_tau=float(tau_y),
topk_percent=float(k_percent),
n_samples=0,
n_positives=0,
auc=float("nan"),
auprc=float("nan"),
recall_at_K=float("nan"),
precision_at_K=float("nan"),
brier_score=float("nan"),
)
)
continue
y_true = np.concatenate(y_true_by_h[h_idx], axis=0)
y_pred = np.concatenate(y_pred_by_h[h_idx], axis=0)
if y_true.shape != y_pred.shape:
raise ValueError(
f"Shape mismatch at tau={tau_y}: y_true{tuple(y_true.shape)} vs y_pred{tuple(y_pred.shape)}"
)
n_samples = int(y_true.shape[0])
for k in range(n_causes_eval):
yk = y_true[:, k]
pk = y_pred[:, k]
n_pos = int(yk.sum())
auc = _binary_roc_auc(yk, pk)
auprc = _average_precision(yk, pk)
brier = float(np.mean((yk.astype(float) - pk.astype(float))
** 2)) if n_samples > 0 else float("nan")
cause_id = int(k) if cause_ids is None else int(cfg.cause_ids[k])
for k_percent in topk_percents:
precision_k, recall_k = _precision_recall_at_k_percent(
yk, pk, float(k_percent))
rows.append(
dict(
cause_id=cause_id,
horizon_tau=float(tau_y),
topk_percent=float(k_percent),
n_samples=n_samples,
n_positives=n_pos,
auc=float(auc),
auprc=float(auprc),
recall_at_K=float(recall_k),
precision_at_K=float(precision_k),
brier_score=float(brier),
)
)
return pd.DataFrame(rows)