2026-01-07 21:32:00 +08:00
|
|
|
import pandas as pd # Pandas for data manipulation
|
|
|
|
|
import tqdm # Progress bar for chunk processing
|
|
|
|
|
import numpy as np # Numerical operations
|
|
|
|
|
|
|
|
|
|
# CSV mapping field IDs to human-readable names
|
|
|
|
|
field_map_file = "field_ids_enriched.csv"
|
2026-01-13 15:59:20 +08:00
|
|
|
# Map original field ID -> new column name
|
|
|
|
|
field_dict = {}
|
2026-01-07 21:32:00 +08:00
|
|
|
tabular_fields = [] # List of tabular feature column names
|
|
|
|
|
with open(field_map_file, "r", encoding="utf-8") as f: # Open the field mapping file
|
|
|
|
|
next(f) # skip header line
|
|
|
|
|
for line in f: # Iterate through lines
|
|
|
|
|
parts = line.strip().split(",") # Split by CSV commas
|
|
|
|
|
if len(parts) >= 3: # Ensure we have at least id and name columns (fix: was >=2)
|
|
|
|
|
# Original field identifier (e.g., "34-0.0")
|
|
|
|
|
field_id = parts[0]
|
|
|
|
|
field_name = parts[2] # Human-readable column name
|
|
|
|
|
field_dict[field_id] = field_name # Record the mapping
|
|
|
|
|
# Track as a potential tabular feature
|
|
|
|
|
tabular_fields.append(field_name)
|
|
|
|
|
# Exclude raw date parts and target columns
|
|
|
|
|
exclude_fields = ['year', 'month', 'Death', 'age_at_assessment']
|
|
|
|
|
tabular_fields = [
|
|
|
|
|
# Filter out excluded columns
|
|
|
|
|
field for field in tabular_fields if field not in exclude_fields]
|
|
|
|
|
|
|
|
|
|
# TSV mapping field IDs to ICD10-related date columns
|
|
|
|
|
field_to_icd_map = "icd10_codes_mod.tsv"
|
|
|
|
|
# Date-like variables to be converted to offsets
|
|
|
|
|
date_vars = []
|
|
|
|
|
with open(field_to_icd_map, "r", encoding="utf-8") as f: # Open ICD10 mapping
|
|
|
|
|
for line in f: # Iterate each mapping row
|
|
|
|
|
parts = line.strip().split() # Split on whitespace for TSV
|
|
|
|
|
if len(parts) >= 6: # Guard against malformed lines
|
|
|
|
|
# Map field ID to the date column name
|
|
|
|
|
field_dict[parts[0]] = parts[5]
|
|
|
|
|
date_vars.append(parts[5]) # Track date column names in order
|
|
|
|
|
|
|
|
|
|
for j in range(17): # Map up to 17 cancer entry slots (dates and types)
|
|
|
|
|
# Cancer diagnosis date slot j
|
|
|
|
|
field_dict[f'40005-{j}.0'] = f'cancer_date_{j}'
|
|
|
|
|
field_dict[f'40006-{j}.0'] = f'cancer_type_{j}' # Cancer type/code slot j
|
|
|
|
|
|
|
|
|
|
# Number of ICD-related date columns before adding extras
|
|
|
|
|
len_icd = len(date_vars)
|
|
|
|
|
date_vars.extend(['Death', 'date_of_assessment'] + # Add outcome date and assessment date
|
|
|
|
|
# Add cancer date columns
|
|
|
|
|
[f'cancer_date_{j}' for j in range(17)])
|
|
|
|
|
|
|
|
|
|
labels_file = "labels.csv" # File listing label codes
|
|
|
|
|
label_dict = {} # Map code string -> integer label id
|
|
|
|
|
with open(labels_file, "r", encoding="utf-8") as f: # Open labels file
|
|
|
|
|
for idx, line in enumerate(f): # Enumerate to assign incremental label IDs
|
|
|
|
|
parts = line.strip().split(' ') # Split by space
|
|
|
|
|
if parts and parts[0]: # Guard against empty lines
|
|
|
|
|
# Map code to index (0 for padding, 1 for checkup)
|
|
|
|
|
label_dict[parts[0]] = idx + 2
|
|
|
|
|
|
|
|
|
|
event_list = [] # Accumulator for event arrays across chunks
|
|
|
|
|
tabular_list = [] # Accumulator for tabular feature DataFrames across chunks
|
|
|
|
|
ukb_iterator = pd.read_csv( # Stream UK Biobank data in chunks
|
|
|
|
|
"ukb_data.csv",
|
|
|
|
|
sep=',',
|
|
|
|
|
chunksize=10000, # Stream file in manageable chunks to reduce memory footprint
|
|
|
|
|
# First column (participant ID) becomes DataFrame index
|
|
|
|
|
index_col=0,
|
|
|
|
|
low_memory=False # Disable type inference optimization for consistent dtypes
|
|
|
|
|
)
|
|
|
|
|
# Iterate chunks with progress
|
|
|
|
|
for ukb_chunk in tqdm.tqdm(ukb_iterator, desc="Processing UK Biobank data"):
|
|
|
|
|
# Rename columns to friendly names
|
|
|
|
|
ukb_chunk = ukb_chunk.rename(columns=field_dict)
|
|
|
|
|
# Require sex to be present
|
|
|
|
|
ukb_chunk.dropna(subset=['sex'], inplace=True)
|
|
|
|
|
|
|
|
|
|
# Construct date of birth from year and month (day fixed to 1)
|
|
|
|
|
ukb_chunk['day'] = 1
|
|
|
|
|
ukb_chunk['dob'] = pd.to_datetime(
|
|
|
|
|
# Guard against malformed dates
|
|
|
|
|
ukb_chunk[['year', 'month', 'day']], errors='coerce'
|
|
|
|
|
)
|
|
|
|
|
del ukb_chunk['day']
|
|
|
|
|
|
|
|
|
|
# Use only date variables that actually exist in the current chunk
|
|
|
|
|
present_date_vars = [c for c in date_vars if c in ukb_chunk.columns]
|
|
|
|
|
|
|
|
|
|
# Convert date-like columns to datetime and compute day offsets from dob
|
|
|
|
|
if present_date_vars:
|
|
|
|
|
date_cols = ukb_chunk[present_date_vars].apply(
|
|
|
|
|
pd.to_datetime, format="%Y-%m-%d", errors='coerce' # Parse dates safely
|
|
|
|
|
)
|
|
|
|
|
date_cols_days = date_cols.sub(
|
|
|
|
|
ukb_chunk['dob'], axis=0) # Timedelta relative to dob
|
|
|
|
|
ukb_chunk[present_date_vars] = date_cols_days.apply(
|
|
|
|
|
lambda x: x.dt.days) # Store days since dob
|
|
|
|
|
|
|
|
|
|
# Append tabular features (use only columns that exist)
|
|
|
|
|
present_tabular_fields = [
|
|
|
|
|
c for c in tabular_fields if c in ukb_chunk.columns]
|
|
|
|
|
tabular_list.append(ukb_chunk[present_tabular_fields].copy())
|
|
|
|
|
|
|
|
|
|
# Process disease events from ICD10-related date columns
|
|
|
|
|
# Take ICD date cols plus 'Death' if present by order
|
|
|
|
|
icd10_cols = present_date_vars[:len_icd + 1]
|
|
|
|
|
# Melt to long form: participant id, event code (column name), and days offset
|
|
|
|
|
melted_df = ukb_chunk.reset_index().melt(
|
|
|
|
|
id_vars=['eid'],
|
|
|
|
|
value_vars=icd10_cols,
|
|
|
|
|
var_name='event_code',
|
|
|
|
|
value_name='days',
|
|
|
|
|
)
|
|
|
|
|
# Require non-missing day offsets
|
|
|
|
|
melted_df.dropna(subset=['days'], inplace=True)
|
|
|
|
|
if not melted_df.empty:
|
|
|
|
|
melted_df['label'] = melted_df['event_code'].map(
|
|
|
|
|
label_dict) # Map event code to numeric label
|
|
|
|
|
# Fix: ensure labels exist before int cast
|
|
|
|
|
melted_df.dropna(subset=['label'], inplace=True)
|
|
|
|
|
if not melted_df.empty:
|
|
|
|
|
event_list.append(
|
|
|
|
|
melted_df[['eid', 'days', 'label']]
|
|
|
|
|
.astype(int) # Safe now since label and days are non-null
|
|
|
|
|
.to_numpy()
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# Optimized cancer processing without wide_to_long
|
|
|
|
|
cancer_frames = []
|
|
|
|
|
for j in range(17):
|
|
|
|
|
d_col = f'cancer_date_{j}'
|
|
|
|
|
t_col = f'cancer_type_{j}'
|
|
|
|
|
if d_col in ukb_chunk.columns and t_col in ukb_chunk.columns:
|
|
|
|
|
# Filter rows where both date and type are present
|
|
|
|
|
mask = ukb_chunk[d_col].notna() & ukb_chunk[t_col].notna()
|
|
|
|
|
if mask.any():
|
|
|
|
|
subset_idx = ukb_chunk.index[mask]
|
|
|
|
|
subset_days = ukb_chunk.loc[mask, d_col]
|
|
|
|
|
subset_type = ukb_chunk.loc[mask, t_col]
|
|
|
|
|
|
|
|
|
|
# Map cancer type to label
|
|
|
|
|
# Use first 3 chars
|
|
|
|
|
cancer_codes = subset_type.str.slice(0, 3)
|
|
|
|
|
labels = cancer_codes.map(label_dict)
|
|
|
|
|
|
|
|
|
|
# Filter valid labels
|
|
|
|
|
valid_label_mask = labels.notna()
|
|
|
|
|
if valid_label_mask.any():
|
|
|
|
|
# Create array: eid, days, label
|
|
|
|
|
# Ensure types are correct for numpy
|
|
|
|
|
c_eids = subset_idx[valid_label_mask].values
|
|
|
|
|
c_days = subset_days[valid_label_mask].values
|
|
|
|
|
c_labels = labels[valid_label_mask].values
|
|
|
|
|
|
|
|
|
|
# Stack
|
|
|
|
|
chunk_cancer_data = np.column_stack(
|
|
|
|
|
(c_eids, c_days, c_labels))
|
|
|
|
|
cancer_frames.append(chunk_cancer_data)
|
|
|
|
|
|
|
|
|
|
if cancer_frames:
|
|
|
|
|
event_list.append(np.vstack(cancer_frames))
|
|
|
|
|
|
|
|
|
|
# Combine tabular chunks
|
|
|
|
|
final_tabular = pd.concat(tabular_list, axis=0, ignore_index=False)
|
|
|
|
|
final_tabular.index.name = 'eid' # Ensure index named consistently
|
|
|
|
|
data = np.vstack(event_list) # Stack all event arrays into one
|
|
|
|
|
|
|
|
|
|
# Sort by participant then day
|
|
|
|
|
data = data[np.lexsort((data[:, 1], data[:, 0]))]
|
|
|
|
|
|
|
|
|
|
# Keep only events with non-negative day offsets
|
|
|
|
|
data = data[data[:, 1] >= 0]
|
|
|
|
|
|
|
|
|
|
# Remove duplicate (participant_id, label) pairs keeping first occurrence.
|
|
|
|
|
data = pd.DataFrame(data).drop_duplicates([0, 2]).values
|
|
|
|
|
|
|
|
|
|
# Store compactly using unsigned 32-bit integers
|
|
|
|
|
data = data.astype(np.uint32)
|
|
|
|
|
|
|
|
|
|
# Select eid in both data and tabular
|
|
|
|
|
valid_eids = np.intersect1d(data[:, 0], final_tabular.index)
|
|
|
|
|
data = data[np.isin(data[:, 0], valid_eids)]
|
|
|
|
|
final_tabular = final_tabular.loc[valid_eids]
|
|
|
|
|
final_tabular = final_tabular.convert_dtypes()
|
|
|
|
|
|
|
|
|
|
# Save [eid, sex, date_of_assessment] for basic info
|
|
|
|
|
basic_info = final_tabular[['sex', 'date_of_assessment']]
|
|
|
|
|
basic_info.to_csv("ukb_basic_info.csv")
|
|
|
|
|
|
|
|
|
|
# Drop sex and date_of_assessment from tabular features
|
|
|
|
|
final_tabular = final_tabular.drop(columns=['sex', 'date_of_assessment'])
|
|
|
|
|
|
|
|
|
|
# Process categorical columns in tabular features
|
|
|
|
|
# If a column is integer type with few unique values, treat as categorical. For each integer column:
|
|
|
|
|
# Count unique values (exclude NaN, and negative values if any) as C, set NaN or negative to 0, remap original values to [1..C].
|
|
|
|
|
for col in final_tabular.select_dtypes(include=['Int64', 'int64']).columns:
|
|
|
|
|
# Get unique values efficiently
|
|
|
|
|
series = final_tabular[col]
|
|
|
|
|
unique_vals = series.dropna().unique()
|
|
|
|
|
|
|
|
|
|
# Filter negatives from unique values
|
|
|
|
|
valid_vals = sorted([v for v in unique_vals if v >= 0])
|
|
|
|
|
|
|
|
|
|
if len(valid_vals) <= 10: # Threshold for categorical
|
|
|
|
|
# Create mapping
|
|
|
|
|
val_map = {val: idx + 1 for idx, val in enumerate(valid_vals)}
|
|
|
|
|
|
|
|
|
|
# Map values. Values not in val_map (negatives, NaNs) become NaN
|
|
|
|
|
mapped_col = series.map(val_map)
|
|
|
|
|
|
|
|
|
|
# Fill NaN with 0 and convert to uint32
|
|
|
|
|
final_tabular[col] = mapped_col.fillna(0).astype(np.uint32)
|
|
|
|
|
|
|
|
|
|
# Save processed tabular features
|
|
|
|
|
final_tabular.to_csv("ukb_table.csv")
|
|
|
|
|
|
|
|
|
|
# Save event data
|
|
|
|
|
np.save("ukb_event_data.npy", data)
|